您选择的条件: Tingting Wang
  • Magnetically-dressed CrSBr exciton-polaritons in ultrastrong coupling regime

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The strong coupling between photons and matter excitations such as excitons, phonons, and magnons is of central importance in the study of light-matter interactions. Bridging the flying and stationary quantum states, the strong light-matter coupling enables the coherent transmission, storage, and processing of quantum information, which is essential for building photonic quantum networks. Over the past few decades, exciton-polaritons have attracted substantial research interest due to their half-light-half-matter bosonic nature. Coupling exciton-polaritons with magnetic orders grants access to rich many-body phenomena, but has been limited by the availability of material systems that exhibit simultaneous exciton resonances and magnetic ordering. Here we report magnetically-dressed microcavity exciton-polaritons in the van der Waals antiferromagnetic (AFM) semiconductor CrSBr coupled to a Tamm plasmon microcavity. Angle-resolved spectroscopy reveals an exceptionally high exciton-polariton coupling strength attaining 169 meV, demonstrating ultrastrong coupling that persists up to room temperature. Temperature-dependent exciton-polariton spectroscopy senses the magnetic order change from AFM to paramagnetism in CrSBr, confirming its magnetic nature. By applying an out-of-plane magnetic field, an effective tuning of the polariton energy is further achieved while maintaining the ultrastrong exciton-photon coupling strength, which is attributed to the spin canting process that modulates the interlayer exciton interaction. Our work proposes a hybrid quantum platform enabled by robust opto-electronic-magnetic coupling, promising for quantum interconnects and transducers.

  • Transcriptome analysis of near-isogenic lines provides molecular insights into starch biosynthesis in maize kernel

    分类: 生物学 >> 植物学 >> 植物生物化学、植物生物物理学 提交时间: 2016-05-03

    摘要: Starch is the major component in maize kernels, providing a stable carbohydrate source for humans and livestock as well as raw material for the biofuel industry. Increasing maize kernel starch content will help meet industry demands and has the potential to increase overall yields. We developed a pair of maize near-isogenic lines (NILs) with different alleles for a starch quantitative trait locus on chromosome 3 (qHS3), resulting in different kernel starch content. To investigate the candidate genes for qHS3 and elucidate their effects on starch metabolism, RNA-Seq was performed for the developing kernels of the NILs at 14 and 21 d after pollination (DAP). Analysis of genomic and transcriptomic data identified 76 genes with nonsynonymous single nucleotide polymorphisms and 384 differentially expressed genes (DEGs) in the introgressed fragment, including a hexokinase gene, ZmHXK3a, which catalyzes the conversion of glucose to glucose-6-phosphate and may play a key role in starch metabolism. The expression pattern of all DEGs in starch metabolism shows that altered expression of the candidate genes for qHS3 promoted starch synthesis, with positive consequences for kernel starch content. These results expand the current understanding of starch biosynthesis and accumulation in maize kernels and provide potential candidate genes to increase starch content.