按提交时间
按主题分类
按作者
按机构
  • Structural evolution of energy embodied in final demand as economic growth empirical evidence from 25 countries

    分类: 管理学 >> 管理工程 提交时间: 2021-07-16

    摘要: Most countries of the world have put forward the goal of striving for carbon neutrality. The goal is hard to achieve by only relying on supply side solutions for the world. Most countries should pay more attention to the potential of energy conservation and emission reduction in the field of final demand. We construct an empirical analytic framework to investigate energy demand characteristics as economic growth from the perspective of final demand, and the results show a U-shaped curve relationship between the ratio of energy embodied in consumption to energy embodied in investment (REECEEI) and real gross domestic product per capita. The REECEEIs of major developing and developed countries are very different. Compare to the average baseline curve scenario, there is a notable conservation potential of energy embodied in final demand for major developing and developed countries. In climate negotiation, the demand for energy embodied in investment of developing countries should be guaranteed because it is the foundation of their economic development. To conserve energy and reduce emissions in the field of final demand, developing countries should focus on the field of energy embodied in investment, while developed countries should focus on the field of energy embodied in consumption.

  • Prediction of meteorological drought in arid and semi-arid regions using PDSI and SDSM: a case study in Fars Province, Iran

    分类: 地球科学 >> 地球科学史 提交时间: 2020-06-22 合作期刊: 《干旱区科学》

    摘要: Drought is one of the most significant environmental disasters, especially in arid and semi-arid regions. Drought indices as a tool for management practices seeking to deal with the drought phenomenon are widely used around the world. One of these indicators is the Palmer drought severity index (PDSI), which is used in many parts of the world to assess the drought situation and continuation. In this study, the drought state of Fars Province in Iran was evaluated by using the PDSI over 1995–2014 according to meteorological data from six weather stations in the province. A statistical downscaling model (SDSM) was used to apply the output results of the general circulation model in Fars Province. To implement data processing and prediction of climate data, a statistical period 1995–2014 was considered as the monitoring period, and a statistical period 2019–2048 was for the prediction period. The results revealed that there is a good agreement between the simulated precipitation (R2>0.63; R2, determination coefficient; MAE0.95, MAE<1.74, and RMSE<1.78) with the observed data from the stations. The results of the drought monitoring model presented that dry periods would increase over the next three decades as compared to the historical data. The studies showed the highest drought in the meteorological stations Abadeh and Lar during the prediction period under two future scenarios representative concentration pathways (RCP4.5 and RCP8.5). According to the results of the validation periods and efficiency criteria, we suggest that the SDSM is a proper tool for predicting drought in arid and semi-arid regions.

  • Attribution analysis based on Budyko hypothesis for land evapotranspiration change in the Loess Plateau, China

    分类: 环境科学技术及资源科学技术 >> 环境科学技术基础学科 提交时间: 2019-12-06 合作期刊: 《干旱区科学》

    摘要: Land evapotranspiration (ET) is an important process connecting soil, vegetation and the atmosphere, especially in regions that experience shortage in precipitation. Since 1999, the implementation of a large-scale vegetation restoration project has significantly improved the ecological environment of the Loess Plateau in China. However, the quantitative assessment of the contribution of vegetation restoration projects to long-term ET is still in its infancy. In this study, we investigated changes in land ET and associated driving factors from 1982 to 2014 in the Loess Plateau using Budyko-based partial differential methods. Overall, annual ET slightly increased by 0.28 mm/a and there were no large fluctuations after project implementation. An attribution analysis showed that precipitation was the driving factor of inter-annual variability of land ET throughout the study period; the average impacts of precipitation, potential evapotranspiration, and vegetation restoration on ET change were 61.5%, 11.5% and 26.9%, respectively. These results provide an improved understanding of the relationship between vegetation condition change and climate variation on terrestrial ET in the study area and can support future decision-making regarding water resource availability.

  • Rapid loss of leguminous species in the semi-arid grasslands of northern China under climate change and mowing from 1982 to 2011

    分类: 地球科学 >> 地理学 提交时间: 2020-11-25 合作期刊: 《干旱区科学》

    摘要: Effects of mowing on the composition and diversity of grasslands varied with climate change (e.g., precipitation and temperature). However, the interactive effects of long-term mowing and climate change on the diversity and stability of leguminous and non-leguminous species in the semi-arid grasslands are largely unknown. Here, we used in situ monitoring data from 1982 to 2011 to examine the effects of continuous mowing and climate change on the plant biomass and diversity of leguminous and non-leguminous species, and soil total nitrogen in the typical semi-arid grasslands of northern China. Results showed that the biomass and diversity of leguminous species significantly decreased with the increasing in the biomass and diversity of non-leguminous species during the 30-a period. Variations in biomass were mainly affected by the long-term mowing, while variations in diversity were mainly explained by the climate change. Moreover, the normalized change rates of diversity in leguminous species were significantly higher than those in non-leguminous species. Mowing and temperature together contributed to the diversity changes of leguminous species, with mowing accounting for 50.0% and temperature 28.0%. Temporal stability of leguminous species was substantially lower than that of non-leguminous species. Consequently, soil total nitrogen decreased in the 2000s compared with the 1980s. These findings demonstrated that leguminous species were more sensitive to the long-term mowing and climate change than non-leguminous species in the semi-arid grasslands. Thus, reseeding appropriate leguminous plants when mowing in the semi-arid grasslands may be a better strategy to improve nitrogen levels of grassland ecosystems and maintain ecosystem biodiversity.

  • Simulating hydrological responses to climate change using dynamic and statistical downscaling methods: a case study in the Kaidu River Basin, Xinjiang, China

    分类: 地球科学 >> 地球科学史 提交时间: 2018-10-29 合作期刊: 《干旱区科学》

    摘要: Climate change may affect water resources by altering various processes in natural ecosystems. Dynamic and statistical downscaling methods are commonly used to assess the impacts of climate change on water resources. Objectively, both methods have their own advantages and disadvantages. In the present study, we assessed the impacts of climate change on water resources during the future periods (2020–2029 and 2040–2049) in the upper reaches of the Kaidu River Basin, Xinjiang, China, and discussed the uncertainties in the research processes by integrating dynamic and statistical downscaling methods (regional climate models (RCMs) and general circulation modes (GCMs)) and utilizing these outputs. The reference period for this study is 1990–1999. The climate change trend is represented by three bias-corrected RCMs (i.e., Hadley Centre Global Environmental Model version 3 regional climate model (HadGEM3-RA), Regional Climate Model version 4 (RegCM4), and Seoul National University Meso-scale Model version 5 (SUN-MM5)) and an ensemble of GCMs on the basis of delta change method under two future scenarios (RCP4.5 and RCP8.5). We applied the hydrological SWAT (Soil and Water Assessment Tool) model which uses the RCMs/GCMs outputs as input to analyze the impacts of climate change on the stream flow and peak flow of the upper reaches of the Kaidu River Basin. The simulation of climate factors under future scenarios indicates that both temperature and precipitation in the study area will increase in the future compared with the reference period, with the largest increase of annual mean temperature and largest percentage increase of mean annual precipitation being of 2.4°C and 38.4%, respectively. Based on the results from bias correction of climate model outputs, we conclude that the accuracy of RCM (regional climate model) simulation is much better for temperature than for precipitation. The percentage increase in precipitation simulated by the three RCMs is generally higher than that simulated by the ensemble of GCMs. As for the changes in seasonal precipitation, RCMs exhibit a large percentage increase in seasonal precipitation in the wet season, while the ensemble of GCMs shows a large percentage increase in the dry season. Most of the hydrological simulations indicate that the total stream flow will decrease in the future due to the increase of evaporation, and the maximum percentage decrease can reach up to 22.3%. The possibility of peak flow increasing in the future is expected to higher than 99%. These results indicate that less water is likely to be available in the upper reaches of the Kaidu River Basin in the future, and that the temporal distribution of flow may become more concentrated.

  • Characterizing the spatiotemporal variations of evapotranspiration and aridity index in mid-western China from 2001 to 2016

    分类: 地球科学 >> 地理学 提交时间: 2021-12-30 合作期刊: 《干旱区科学》

    摘要: Mid-western China is one of the most sensitive and fragile areas on the Earth. Evapotranspiration (ET) is a key part of hydrological cycle in these areas and is affected by both global climate change and human activities. The dynamic changes in ET and potential evapotranspiration (PET), which can reflect water consumption and demand, are still unclear, and there is a lack of predictive capacity on drought severity. In this study, we used global MODIS (moderate-resolution imaging spectroradiometer) terrestrial ET (MOD16) products, Morlet wavelet analysis, and simple linear regression to investigate the spatiotemporal variations of ET, PET, reference ET (ET0), and aridity index (AI) in mid-western pastoral regions of China (including Gansu Province, Qinghai Province, Ningxia Hui Autonomous Region, and part of Inner Mongolia Autonomous Region) from 2001 to 2016. The results showed that the overall ET gradually increased from east to southwest in the study area. Actual ET showed an increasing trend, whereas PET tended to decrease from 2001 to 2016. The change in ET was affected by vegetation types. During the study period, the average annual ET0 and AI tended to decrease. At the monthly scale within a year, AI value decreased from January to July and then increased. The interannual variations of ET0 and AI showed periodicity with a main period of 14 a, and two other periodicities of 11 and 5 a. This study showed that in recent years, drought in these pastoral regions of mid-western China has been alleviated. Therefore, it is foreseeable that the demand for irrigation water for agricultural production in these regions will decrease.

  • Mapping the current and future distributions of Onosma species endemic to Iran

    分类: 地球科学 >> 地理学 提交时间: 2021-01-15 合作期刊: 《干旱区科学》

    摘要: Climate change may cause shifts in the natural range of species especially for those that are geographically restricted and/or endemic species. In this study, the spatial distribution of five endemic and threatened species belonging to the genus Onosma (including O. asperrima, O. bisotunensis, O. kotschyi, O. platyphylla, and O. straussii) was investigated under present and future climate change scenarios: RCP2.6 (RCP, representative concentration pathway; optimistic scenario) and RCP8.5 (pessimistic scenario) for the years 2050 and 2080 in Iran. Analysis was conducted using the maximum entropy (MaxEnt) model to provide a basis for the protection and conservation of these species. Seven environmental variables including aspect, depth of soil, silt content, slope, annual precipitation, minimum temperature of the coldest month, and annual temperature range were used as main predictors in this study. The model output for the potential habitat suitability of the studied species showed acceptable performance for all species (i.e., the area under the curve (AUC)>0.800). According to the models generated by MaxEnt, the potential current patterns of the species were consistent with the observed areas of distributions. The projected climate maps under optimistic and pessimistic scenarios (RCP2.6 and RCP8.5, respectively) of 2050 and 2080 resulted in reductions and expansions as well as positive range changes for all species in comparison to their current predicted distributions. Among all species, O. bisotunensis showed the most significant and highest increase under the pessimistic scenario of 2050 and 2080. Finally, the results of this study revealed that the studied plant species have shown an acute adaptability to environmental changes. The results can provide useful information to managers to apply appropriate strategies for the management and conservation of these valuable Iranian medicinal and threatened plant species in the future.

  • Market opportunities do not explain the ability of herders to meet livelihood objectives over winter on the Mongolian Plateau

    分类: 地球科学 >> 地球科学史 提交时间: 2020-06-22 合作期刊: 《干旱区科学》

    摘要: Drylands under pastoral land use are considered one of the most vulnerable social-ecological systems to global climate change, but the herders' abilities to adapt to the different extreme weather events have received little attention in the drylands. Herders on the Mongolian Plateau (MP; including Inner Mongolia Autonomous Region of China and Mongolia), have had a long history of adapting climatic variability and extreme weather events. However, it is unclear how changes such as increased levels of infrastructure and market integration affect the ability of herders to achieve the key livelihood objectives: the minimisation of the death and abortion rates of livestock in the winter. Here, we used remotely sensed and household survey data to map, model and explore the climate exposure and sensitivity of herders in the settled area (Inner Mongolia of China) and nomadic area (Mongolia) in the winter of 2012–2013. We aimed to quantify the multi-scaled characteristics of both climate exposure and sensitivity through the lens of key adaptive strategies utilized by herders. Our results showed that the higher levels of infrastructure and market integration, and the lower levels of remoteness on the MP did not increase the herders' ability to achieve the key livelihood objectives. Our results also suggested that exposure to the snow that is comparatively greater than the long-term average (cumulative exposure) may be more important in determining the social-ecological vulnerability than absolute exposure. We suggested that neither the risk management strategies available to these herders, nor the demographic variables, could compensate for the mode of production governing the pastoral systems. Our study could provide further evidence for the complex and scaled nature of climate exposure and sensitivity, and the results imply that any analysis of the relationship among exposure, sensitivity and vulnerability of pastoral households to climate change in the drylands will require a multi-scaled and interdisciplinary approach.

  • Impact of large-scale vegetation restoration project on summer land surface temperature on the Loess Plateau, China

    分类: 地球科学 >> 地球科学史 提交时间: 2018-10-29 合作期刊: 《干旱区科学》

    摘要: A large-scale afforestation project has been carried out since 1999 in the Loess Plateau of China. However, vegetation-induced changes in land surface temperature (LST) through the changing land surface energy balance have not been well documented. Using satellite measurements, this study quantified the contribution of vegetation restoration to the changes in summer LST and analyzed the effects of different vegetation restoration patterns on LST during both daytime and nighttime. The results show that the average daytime LST decreased by 4.3°C in the vegetation restoration area while the average nighttime LST increased by 1.4°C. The contributions of the vegetation restoration project to the changes in daytime LST and nighttime LST are 58% and 60%, respectively, which are far greater than the impact of climate change. The vegetation restoration pattern of cropland (CR) converting into artificial forest (AF) has a cooling effect during daytime and a warming effect at nighttime, while the conversion of CR to grassland has an opposite effect compared with the conversion of CR to AF. Our results indicate that increasing evapotranspiration caused by the vegetation restoration on the Loess Plateau is the controlling factor of daytime LST change, while the nighttime LST change is affected by soil humidity and air humidity.

  • Evolution of groundwater recharge-discharge balance in the Turpan Basin of China during 1959–2021

    分类: 地球科学 >> 地理学 提交时间: 2023-10-17 合作期刊: 《干旱区科学》

    摘要: Groundwater overexploitation is a serious problem in the Turpan Basin, Xinjiang Uygur Autonomous Region of China, causing groundwater level declines and ecological and environmental problems such as the desiccation of karez wells and the shrinkage of lakes. Based on historical groundwater data and field survey data from 1959 to 2021, we comprehensively studied the evolution of groundwater recharge and discharge terms in the Turpan Basin using the groundwater equilibrium method, mathematical statistics, and GIS spatial analysis. The reasons for groundwater overexploitation were also discussed. The results indicated that groundwater recharge increased from 14.58108 m3 in 1959 to 15.69108 m3 in 1980, then continued to decrease to 6.77108 m3 in 2021. Groundwater discharge increased from 14.49108 m3 in 1959 to 16.02108 m3 in 1989, while continued to decrease to 9.97108 m3 in 2021. Since 1980, groundwater recharge-discharge balance has been broken, the decrease rate of groundwater recharge exceeded that of groundwater discharge and groundwater recharge was always lower than groundwater discharge, showing in a negative equilibrium, which caused the continuous decrease in groundwater level in the Turpan Basin. From 1980 to 2002, groundwater overexploitation increased rapidly, peaking from 2003 to 2011 with an average overexploitation rate of 4.79108 m3/a; then, it slowed slightly from 2012 to 2021, and the cumulative groundwater overexploitation was 99.21108 m3 during 19802021. This research can provide a scientific foundation for the restoration and sustainable use of groundwater in the overexploited areas of the Turpan Basin.

  • Enhanced soil moisture improves vegetation growth in an arid grassland of Inner Mongolia Autonomous Region, China

    分类: 地球科学 >> 地理学 提交时间: 2023-07-17 合作期刊: 《干旱区科学》

    摘要:Climate change impacts on grasslands that cover a quarter of the global land area, have become unprecedented during the 21st century. One of the important ecological realms, arid grasslands of northern China, which occupy more than 70% of the region's land area. However, the impact of climate change on vegetation growth in these arid grasslands is not consistent and lacks corresponding quantitative research. In this study, NDVI (normalized difference vegetation index) and climate factors including temperature, precipitation, solar radiation, soil moisture, and meteorological drought were analyzed to explore the determinants of changes in grassland greenness in Inner Mongolia Autonomous Region (northern China) during 1982–2016. The results showed that grasslands in Inner Mongolia witnessed an obvious trend of seasonal greening during the study period. Two prominent climatic factors, precipitation and soil moisture accounted for approximately 33% and 27% of grassland NDVI trends in the region based on multiple linear regression and boosted regression tree methods. This finding highlights the impact of water constraints to vegetation growth in Inner Mongolia's grasslands. The dominant role of precipitation in regulating grassland NDVI trends in Inner Mongolia significantly weakened from 1982 to 1996, and the role of soil moisture strengthened after 1996. Our findings emphasize the enhanced importance of soil moisture in driving vegetation growth in arid grasslands of Inner Mongolia, which should be thoroughly investigated in the future.

  • Modelling the biological invasion of Prosopis juliflora using geostatistical-based bioclimatic variables under climate change in arid zones of south-western Iran

    分类: 环境科学技术及资源科学技术 >> 环境学 提交时间: 2022-03-15 合作期刊: 《干旱区科学》

    摘要: Invasive species have been the focus of ecologists due to their undesired impacts on the environment. The extent and rapid increase in invasive plant species is recognized as a natural cause of global-biodiversity loss and degrading ecosystem services. Biological invasions can affect ecosystems across a wide spectrum of bioclimatic conditions. Understanding the impact of climate change on species invasion is crucial for sustainable biodiversity conservation. In this study, the possibility of mapping the distribution of invasive Prosopis juliflora (Swartz) DC. was shown using present background data in Khuzestan Province, Iran. After removing the spatial bias of background data by creating weighted sampling bias grids for the occurrence dataset, we applied six modelling algorithms (generalized additive model (GAM), classification tree analysis (CTA), random forest (RF), multivariate adaptive regression splines (MARS), maximum entropy (MaxEnt) and ensemble model) to predict invasion distribution of the species under current and future climate conditions for both optimistic (RCP2.6) and pessimistic (RCP8.5) scenarios for the years 2050 and 2070, respectively. Predictor variables including weighted mean of CHELSA (climatologies at high resolution for the Earth's land surface areas)-bioclimatic variables and geostatistical-based bioclimatic variables (19792020), physiographic variables extracted from shuttle radar topography mission (SRTM) and some human factors were used in modelling process. To avoid causing a biased selection of predictors or model coefficients, we resolved the spatial autocorrelation of presence points and multi-collinearity of the predictors. As in a conventional receiver operating characteristic (ROC), the area under curve (AUC) is calculated using presence and absence observations to measure the probability and the two error components are weighted equally. All models were evaluated using partial ROC at different thresholds and other statistical indices derived from confusion matrix. Sensitivity analysis showed that mean diurnal range (Bio2) and annual precipitation (Bio12) explained more than 50%of the changes in the invasion distribution and played a pivotal role in mapping habitat suitability of P. juliflora. At all thresholds, the ensemble model showed a significant difference in comparison with single model. However, MaxEnt and RF outperformed the others models. Under climate change scenarios, it is predicted that suitable areas for this invasive species will increase in Khuzestan Province, and increasing climatically suitable areas for the species in future will facilitate its future distribution. These findings can support the conservation planning and management efforts in ecological engineering and be used in formulating preventive measures.

  • A bibliometric analysis of carbon exchange in global drylands

    分类: 地球科学 >> 地理学 提交时间: 2021-12-03 合作期刊: 《干旱区科学》

    摘要: Drylands refer to regions with an aridity index lower than 0.65, and billions of people depend on services provided by the critically important ecosystems in these areas. How ecosystem carbon exchange in global drylands (CED) occurs and how climate change affects CED are critical to the global carbon cycle. Here, we performed a comprehensive bibliometric study on the fields of annual publications, marked journals, marked institutions, marked countries, popular keywords, and their temporal evolution to understand the temporal trends of CED research over the past 30 a (1991–2020). We found that the annual scientific publications on CED research increased significantly at an average growth rate of 7.93%. Agricultural Water Management ranked first among all journals and had the most citations. The ten most productive institutions were centered on drylands in America, China, and Australia that had the largest number and most citations of publications on CED research. "Climate change" and climate-related (such as "drought", "precipitation", "temperature", and "rainfall") research were found to be the most popular study areas. Keywords were classified into five clusters, indicating the five main research focuses on CED studies: hydrological cycle, effects of climate change, carbon and water balance, productivity, and carbon-nitrogen-phosphorous coupling cycles. The temporal evolution of keywords further showed that the areas of focus on CED studies were transformed from classical pedology and agricultural research to applied ecology and then to global change ecological research over the past 30 a. In future CED studies, basic themes (such as "water", "yield", and "salinity") and motor themes (such as "climate change", "sustainability", and "remote sensing") will be the focus of research on CED. In particular, multiple integrated methods to understand climate change and ecosystem sustainability are potential new research trends and hotspots.

  • Effects of climate change and land-use changes on spatiotemporal distributions of blue water and green water in Ningxia, Northwest China

    分类: 地球科学 >> 地理学 提交时间: 2021-08-06 合作期刊: 《干旱区科学》

    摘要: Water resources are a crucial factor that determines the health of ecosystems and socio-economic development; however, they are under threat due to climate change and human activities. The quantitative assessment of water resources using the concept of blue water and green water can improve regional water resources management. In this study, spatiotemporal distributions of blue water and green water were simulated and analyzed under scenarios of climate change and land-use changes using the Soil and Water Assessment Tool (SWAT) in Ningxia Hui Autonomous Region, Northwest China, between 2009 and 2014. Green water, a leading component of water resources, accounted for more than 69.00% of the total water resources in Ningxia. Blue water and green water showed a single peak trend on the monthly and annual scales during the study period. On the spatial scale, the southern region of Ningxia showed higher blue water and green water resources than the northern region. The spatiotemporal distribution features of blue water, green water, and green water flow had strong correlations with precipitation. Furthermore, the simulation identified the climate change in Ningxia to be more influential on blue water and green water than land-use changes. This study provides a specific scientific foundation to manage water resources in Ningxia when encountered with climate change together with human activities.

  • Investigating the causes of Lake Urmia shrinkage: climate change or anthropogenic factors?

    分类: 地球科学 >> 地理学 提交时间: 2023-04-13 合作期刊: 《干旱区科学》

    摘要:In the current scenario, Lake Urmia, one of the vastest hyper saline lakes on the Earth, has been affected by serious environmental degradation. Using different satellite images and observational data, this study investigated the changes in the lake for the period 1970–2020 based on the effects of climate change and several human-induced processes on Lake Urmia, such as population growth, excessive dam construction, low irrigation water use efficiency, poor water resources management, increased sediment flow into the lake, and lack of political and legal frameworks. The results indicated that between 1970 and 1997, the process of change in Lake Urmia was slow; however; the shrinkage was faster between 1998 and 2018, with about 30.00% of the lake area disappearing. As per the findings, anthropogenic factors had a much greater impact on Lake Urmia than climate change and prolonged drought; the mismanagement of water consumption in the agricultural sector and surface and underground water withdrawals in the basin have resulted in a sharp decrease in the lake's surface. These challenges have serious implications for water resources management in Lake Urmia Basin. Therefore, we provided a comprehensive overview of anthropogenic factors on the changes in Lake Urmia along with existing opportunities for better water resources management in Lake Urmia Basin. This study serves as a guideline framework for climate scientists and hydrologists in order to assess the effects of different factors on lake water resources and for decision-makers to formulate strategies and plans according to the management task.

  • A cultivated area forecasting approach in artificial oases under climate change and human activities

    分类: 地球科学 >> 地理学 提交时间: 2019-06-20 合作期刊: 《干旱区科学》

    摘要: The cultivated area in artificial oases is deeply influenced by global climate change and human activities. Thus, forecasting cultivated area in artificial oases under climate change and human activities is of great significance. In this study, an approach named GD-HM-PSWROAM, consisting of general circulation model downscaling (GD), hydrological model (HM), and planting structure and water resource optimal allocation model (PSWROAM), was developed and applied in the irrigation district of the Manas River Basin in Xinjiang Uygur Autonomous Region of China to forecast the cultivated area tendency. Furthermore, the catchment export of the MIKE11 HD/NAM model was set to the Kensiwate hydrological station. The results show that the downscaling effects of temperature can be fairly satisfying, while those of precipitation may be not satisfying but acceptable. Simulation capacity of the MIKE11 HD/NAM model on the discharge in the Kensiwate hydrological station can meet the requirements of running the PSWROAM. The accuracy of the PSWROAM indicated that this model can perform well in predicting the change of cultivated area at the decadal scale. The cultivated area in the Manas River Basin under current human activities may be generally decreasing due to the climate change. But the adverse effects of climate change can be weakened or even eliminated through positive human activities. The cultivated area in the Manas River Basin may even be increasing under assumed human activities and future climate scenarios. The effects of human activities in the future can be generally predicted and quantified according to the cultivated area trends under current human activities and the situations in the study area. Overall, it is rational and acceptable to forecast the cultivated area tendency in artificial oases under future climate change and human activities through the GD-HM-PSWROAM approach.

  • Quantitative distinction of the relative actions of climate change and human activities on vegetation evolution in the Yellow River Basin of China during 1981–2019

    分类: 地球科学 >> 地理学 提交时间: 2023-02-07 合作期刊: 《干旱区科学》

    摘要: Under the combined influence of climate change and human activities, vegetation ecosystem has undergone profound changes. It can be seen that there are obvious differences in the evolution patterns and driving mechanisms of vegetation ecosystem in different historical periods. Therefore, it is urgent to identify and reveal the dominant factors and their contribution rates in the vegetation change cycle. Based on the data of climate elements (sunshine hours, precipitation and temperature), human activities (population intensity and GDP intensity) and other natural factors (altitude, slope and aspect), this study explored the spatial and temporal evolution patterns of vegetation NDVI in the Yellow River Basin of China from 1989 to 2019 through a residual method, a trend analysis, and a gravity center model, and quantitatively distinguished the relative actions of climate change and human activities on vegetation evolution based on Geodetector model. The results showed that the spatial distribution of vegetation NDVI in the Yellow River Basin showed a decreasing trend from southeast to northwest. During 19812019, the temporal variation of vegetation NDVI showed an overall increasing trend. The gravity centers of average vegetation NDVI during the study period was distributed in Zhenyuan County, Gansu Province, and the center moved northeastwards from 1981 to 2019. During 19812000 and 20012019, the proportion of vegetation restoration areas promoted by the combined action of climate change and human activities was the largest. During the study period (19812019), the dominant factors influencing vegetation NDVI shifted from natural factors to human activities. These results could provide decision support for the protection and restoration of vegetation ecosystem in the Yellow River Basin.

  • Transformation of vegetative cover on the Ustyurt Plateau of Central Asia as a consequence of the Aral Sea shrinkage

    分类: 地球科学 >> 地理学 提交时间: 2021-01-22 合作期刊: 《干旱区科学》

    摘要: The gradual shrinkage of the Aral Sea has led to not only the degradation of the unique environments of the Aral Sea, but also numerous and fast developing succession processes in the neighborhood habitats surrounding the sea. In this study, we investigated the vegetative succession processes related to the Aral Sea shrinkage in the Eastern Cliff of the Ustyurt Plateau in Republic of Uzbekistan, Central Asia. We compared the results of our current investigation (2010–2017) on vegetative communities with the geobotany data collected during the 1970s (1970–1980). The results showed great changes in the mesophytic plant communities and habitat aridization as a result of the drop in the underground water level, which decreased atmospheric humidity and increased the salt content of the soil caused by the shrinkage of the Aral Sea. In the vegetative communities, we observed a decrease in the Margalef index (DMg), which had a positive correlation with the poly-dominance index (I-D). The main indications of the plant communities' transformation were the loss of the weak species, the appearance of new communities with low species diversity, the stabilization of the projective cover of former resistant communities, as well as the appearance of a new competitive species, which occupy new habitats.

  • Influence of non-stationarity and auto-correlation of climatic records on spatio-temporal trend and seasonality analysis in a region with prevailing arid and semi-arid climate, Iran

    分类: 地球科学 >> 地理学 提交时间: 2021-01-15 合作期刊: 《干旱区科学》

    摘要: Trend and stationarity analysis of climatic variables are essential for understanding climate variability and provide useful information about the vulnerability and future changes, especially in arid and semi-arid regions. In this study, various climatic zones of Iran were investigated to assess the relationship between the trend and the stationarity of the climatic variables. The Mann-Kendall test was considered to identify the trend, while the trend free pre-whitening approach was applied for eliminating serial correlation from the time-series. Meanwhile, time series stationarity was tested by Dickey-Fuller and Kwiatkowski-Phillips-Schmidt-Shin tests. The results indicated an increasing trend for mean air temperature series at most of the stations over various climatic zones, however, after eliminating the serial correlation factor, this increasing trend changes to an insignificant decreasing trend at a 95% confidence level. The seasonal mean air temperature trend suggested a significant increase in the majority of the stations. The mean air temperature increased more in northwest towards central parts of Iran that mostly located in arid and semi-arid climatic zones. Precipitation trend reveals an insignificant downward trend in most of the series over various climatic zones; furthermore, most of the stations follow a decreasing trend for seasonal precipitation. Furthermore, spatial patterns of trend and seasonality of precipitation and mean air temperature showed that the northwest parts of Iran and margin areas of the Caspian Sea are more vulnerable to the changing climate with respect to the precipitation shortfalls and warming. Stationarity analysis indicated that the stationarity of climatic series influences on their trend; so that, the series which have significant trends are not static. The findings of this investigation can help planners and policy-makers in various fields related to climatic issues, implementing better management and planning strategies to adapt to climate change and variability over Iran.

  • Glacier variations and their response to climate change in an arid inland river basin of Northwest China

    分类: 地球科学 >> 地球科学史 提交时间: 2020-10-20 合作期刊: 《干旱区科学》

    摘要: Glaciers are a critical freshwater resource of river recharge in arid areas around the world. In recent decades, glaciers have shown evidence of retreat due to climate change, and the accelerated ablation of glaciers and associated impacts on water resources have received widespread attention. Glacier variations result from climate change, so they can serve as an indicator of climate change. Considering the climatic differences in different elevation ranges, it is worthwhile to explore whether different responses exist between glacier area and air temperature in each elevation zone. In this study, we selected a typical arid inland river basin (Sugan Lake Basin) in the western Qilian Mountains of Northwest China to analyze the glacier variations and their response to climate change. The glacier area data from 1989 to 2016 were delineated using Landsat Thematic Mapper (TM), Enhanced TM+ (ETM+) and Operational Land Imager (OLI) images. We compared the relationships between glacier area and air temperature at seven meteorological stations in the glacier-covered areas and in the Sugan Lake Basin, and further analyzed the relationship between glacier area and mean air temperature of the glacier surfaces in July–August in the elevation range of 4700–5500 m a.s.l. by the linear regression method and correlation analysis. In addition, based on the linear regression relationship established between glacier area and air temperature in each elevation zone, we predicted glacier areas under future climate scenarios during the periods of 2046–2065 and 2081–2100. The results indicate that the glaciers experienced a remarkable shrinkage from 1989 to 2016 with a shrinkage rate of –1.61 km2/a (–0.5%/a), and the rising temperature is the decisive factor dominating glacial retreat; there is a significant negative linear correlation between glacier area and mean air temperature of the glacier surfaces in July–August in each elevation zone from 1989 to 2016. The variations in glaciers are far less sensitive to changes in precipitation than to changes in air temperature. Due to the influence of climate and topographic conditions, the distribution of glacier area and the rate of glacier ablation first increased and then decreased in different elevation zones. The trend in glacier shrinkage will continue because air temperature will continue to increase in the future, and the result of glacier retreat in each elevation zone will be slightly slower than that in the entire study area. Quantitative glacier research can more accurately reflect the response of glacier variations to climate change, and the regression relationship can be used to predict the areas of glaciers under future climate scenarios. These conclusions can offer effective references for assessing glacier variations and their response to climate change in arid inland river basins in Northwest China as well as other similar regions in the world.