您当前的位置: > 详细浏览

SuperWIMP dark matter scenario in light of WMAP

请选择邀稿期刊:
摘要: The heavy gravitino in the minimal supergravity (mSUGRA) models is likely to be the lightest supersymmetric particle (LSP). Produced from the late decays of the metastable weakly interacting massive particles (WIMPS) such as the lightest neutralinos, the stable gravitinos can be plausible candidates for the cold dark matter in the universe. Such gravitino dark matter can naturally evade the current detection experiments due to its superweak couplings. However, this scenario must be subjected to the constraints from the big bang nucleosynthesis (BBN) predictions for light element abundances as well as the Wilkinson microwave anisotropy probe (WMAP) data for the relic density. Assuming the popular case in which the lightest neutralino is the next-to-lightest supersymmetric particle (NLSP), we find that requiring BBN predictions for light element abundances to agree with the WMAP data can impose upper and lower mass bounds on both the gravitino LSP and the neutralino NLSP. A scan over the mSUGRA parameter space, subjected to the BBN constraints, the WMAP data and the b --> sgamma bounds, shows that the low tan beta (less than or similar to 40) region as well as the region accessible at the CERN Large Hadron Collider (LHC) will be severely constrained. Such stringent constraints on the parameter space might be instructive for testing this scenario in future collider experiments.

版本历史

[V1] 2016-05-15 20:46:17 ChinaXiv:201605.01769V1 下载全文
点击下载全文
预览
同行评议状态
待评议
许可声明
metrics指标
  •  点击量1503
  •  下载量546
评论
分享