按提交时间
按主题分类
按作者
按机构
  • Quantification of red soil macropores affected by slope erosion and sediment using computed tomography

    分类: 农、林、牧、渔 >> 土壤学 提交时间: 2021-03-17

    摘要: Purpose Soil structures are the main course of the formation and development of collapsing gullies, which are the most severe type of erosion in south China. However, few studies have focused on the relationship between soil macropores, soil erosion, and local topography. This study aimed to quantify and compare soil properties and macropore characteristics in the collapsing gully region, and explore their influences on the formation and development of the associated erosion. Materials and methods Soil core columns at different positions of a typical collapsing gully were excavated, and then scanned to analyze soil macropores. Moreover, soil properties and saturated hydraulic conductivity were investigated in the laboratory and in the field, respectively. Results and discussion The results indicated that the sand content increased from the ridge to the slope and the valley, while silt and clay contents decreased for the same catena. The mean weight diameter of aggregates was largest at the ridge and lowest at the valley. The infiltrate rates were highest at the valley and lowest at the slope. The valley had the greatest macroporosity (1.09±0.33%), and the highest number (5919±703), volumes (24.7±7.5 cm3) and surface (10.4±2.6 m2) of macropores, as well as the highest conectivity (42.3), while the slope had the smallest macroporosity (0.15±0.14%), and the smallest number (1189±747), volumes (3.4±3.2 cm3) and surface (1.7±1.4 m2) of macropores. The mean pore volume of macropores larger than 1 mm3 was largest at the ridge (16.8±7.4), and smallest at the slope (10.6±2.9). The number of macropores and their macroporosity mainly decreased with increasing depth, but were influenced by the soil macrofauna as well as the erosion and sediment processes. Macropores were mainly vertical, which is affected by the roots of plants and is conducive to the vertical infiltration of water. But, there wer many horizontal macropores at the valley because of the sediment process. The equivalent pore diameter of macropores was mainly smaller than 2 mm (accouting for more than 76.3%), and the macropores larger than 5 mm were less than 1%. Conclusions The macropore characteristics at different sites of the collapsing gullies affected the soil water infiltration and hydraulic conductivity, and further affected the processes of water erosion and mass ersion. The highest macroposities at the valley would result strong subsurface flow erosion and the loss of the base of collapsing wall. Macropores at the ridge would increase rain infiltration and promote soil collapsing. Few macropores and low infiltration abilities at the slope would strengthen the overland flow erosion. Thus, macropore characteristics had significant effects on both the formation and development of collapsing gullies.

  • Sediment yield and erosion–deposition distribution characteristics in ephemeral gullies in black soil areas under geocell protection

    分类: 地球科学 >> 地理学 提交时间: 2023-02-15 合作期刊: 《干旱区科学》

    摘要: Investigating the effect of geocells on the erosion and deposition distribution of ephemeral gullies in the black soil area of Northeast China can provide a scientific basis for the allocation of soil and water conservation measures in ephemeral gullies. In this study, an artificial simulated confluence test and stereoscopic photogrammetry were used to analyze the distribution characteristics of erosion and deposition in ephemeral gullies protected by geocells and the effect of different confluence flows on the erosion process of ephemeral gullies. Results showed that when the confluence flow was larger, the effect of geocell was more evident, and the protection against ephemeral gully erosion was stronger. When the confluence flow rates were 0.6, 1.8, 2.4, and 3.0 m3/h, ephemeral gully erosion decreased by 37.84%, 26.09%, 21.40%, and 35.45%. When the confluence flow rates were 2.4 and 3.0 m3/h, the average sediment yield rate of the ephemeral gully was close to 2.14 kg/(m2min), and the protective effect of ephemeral gully erosion was enhanced. When the flow rate was higher, the surface fracture of the ephemeral gully was more serious. With an increase in confluence flow rate, the ratio of erosion to deposition increased gradually, the erosion area of ephemeral gullies was expanded, and erosion depth changed minimally. In conclusion, geocell measures changed erosion patterns by altering the rill erosion/deposition ratio, converting erosion from rill erosion to sheet erosion.

  • Impact of utility-scale solar photovoltaic array on the aeolian sediment transport in Hobq Desert, China

    分类: 地球科学 >> 地理学 提交时间: 2021-04-22 合作期刊: 《干旱区科学》

    摘要: Deserts are ideal places to develop ground-mounted large-scale solar photovoltaic (PV) power station. Unfortunately, solar energy production, operation, and maintenance are affected by geomorphological changes caused by surface erosion that may occur after the construction of the solar PV power station. In order to avoid damage to a solar PV power station in sandy areas, it is necessary to investigate the characteristics of wind-sand movement under the interference of solar PV array. The study was undertaken by measuring sediment transport of different wind directions above shifting dunes and three observation sites around the PV panels in the Hobq Desert, China. The results showed that the two-parameter exponential function provides better fit for the measured flux density profiles to the near-surface of solar PV array. However, the saltation height of sand particles changes with the intersection angle between the solar PV array and wind direction exceed 45°. The sediment transport rate above shifting dunes was always the greatest, while that around the test PV panels varied accordingly to the wind direction. Moreover, the aeolian sediment transport on the solar PV array was significantly affected by wind direction. The value of sand inhibition rate ranged from 35.46% to 88.51% at different wind directions. When the intersection angle exceeds 45°, the mean value of sediment transport rate above the solar PV array reduces to 82.58% compared with the shifting dunes. The results of our study expand our understanding of the formation and evolution of aeolian geomorphology at the solar PV footprint. This will facilitate the design and control engineering plans for solar PV array in sandy areas that operate according to the wind regime.

  • Wind-proof and sand-fixing effects of Artemisia ordosica with different coverages in the Mu Us Sandy Land, northern China

    分类: 地球科学 >> 地理学 提交时间: 2022-10-13 合作期刊: 《干旱区科学》

    摘要:Wind erosion is a key global environmental problem and has many adverse effects. The Mu Us Sandy Land of northern China is characterized by an arid climate, where vegetation patches and bare sand patches are usually distributed mosaically, and aeolian activities occur frequently. Vegetation plays a significant role in controlling wind erosion. Artemisia ordosica is the most dominant native plant species in the Mu Us Sandy Land. It is urgent to study the wind-proof and sand-fixing effects of Artemisia ordosica in the Mu Us Sandy Land. This study analyzed the wind-proof and sand-fixing effects of Artemisia ordosica based on the field data of wind regimes, aeolian sediment transport, and surface change of Artemisia ordosica plots with four coverages (denoted as site A, site B, site C, and site D) in the Mu Us Sandy Land during the period from 1 June 2018 to 29 June 2019. The coverages of Artemisia ordosica at site A, site B, site C, and site D were 2%, 16%, 29%, and 69%, respectively. The annual average wind speeds at 2.0 m height above the ground for site A, site B, site C, and site D were 3.47, 2.77, 2.21, and 1.97 m/s, respectively. The annual drift potentials were 193.80, 69.72, 15.05, and 6.73 VU at site A, site B, site C, and site D, respectively. The total horizontal aeolian sediment fluxes during the period from 2–3 June 2018 to 6 June 2019 at site A, site B, site C, and site D were 4633.61, 896.80, 10.54, and 6.14 kg/m, respectively. Site A had the largest surface changes, and the surface changes at site B were significantly weaker than those at site A, whereas the surface changes at site C and site D were minimal. The results indicated that Artemisia ordosica significantly reduced the wind speed, drift potential, aeolian sediment transport, and surface changes. The higher the coverage of Artemisia ordosica is, the more obvious the effects of wind-proof and sand-fixing. Wind erosion would be effectively controlled in the Mu Us Sandy Land if the coverage of Artemisia ordosica is greater than 29%. These results provide a scientific basis for evaluating the ecosystem service function of Artemisia ordosica and the vegetation protection and construction projects in the Mu Us Sandy Land.

  • A field investigation of wind erosion in the farming–pastoral ecotone of northern China using a portable wind tunnel: a case study in Yanchi County

    分类: 地球科学 >> 地球科学其他学科 提交时间: 2017-12-08 合作期刊: 《干旱区科学》

    摘要: The farming–pastoral ecotone in northern China is an extremely fragile ecological zone where wind erosion of cropland and rangeland is easy to occur. In this study, using a portable wind tunnel as a wind simulator, we conducted field simulated wind erosion experiments combined with laboratory analysis to investigate wind erosion of soils in trampled rangeland, non-tilled cropland and tilled cropland in Yanchi County, China. The results showed that compared with rangeland, the cropland had a higher soil water holding capacity and lower soil bulk density. The wind erosion rate of trampled rangeland was much higher than those of non-tilled cropland and tilled cropland. For cropland, the wind erosion rate of the soil after tilling was surprisingly less than that of the soil before tilling. With increasing of wind speed, the volume mean diameter of the eroded sediment collected by the trough in the wind tunnel generally increased while the clay and silt content decreased for all soils. The temporal variation in wind erosion of the trampled rangeland indicated that particle entrainment and dust emission decreased exponentially with erosion time through the successive wind erosion events due to the exhaustion of erodible particles.

  • Environmental dynamics of nitrogen and phosphorus release from river sediments of arid areas

    分类: 地球科学 >> 地质学 提交时间: 2024-05-15 合作期刊: 《干旱区科学》

    摘要: Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers. Simultaneously, nitrogen and phosphorus can be affected by environment and re-enter the upper water body, causing secondary pollution of the river water. In this study, laboratory simulation experiments were conducted initially to investigate the release of nitrogen and phosphorus from river sediments in Urumqi City and the surrounding areas in Xinjiang Uygur Autonomous Region of China and determine the factors that influence their release. The results of this study showed significant short-term differences in nitrogen and phosphorus release characteristics from sediments at different sampling points. The proposed secondary kinetics model (i.e., pseudo-second-order kinetics model) better fitted the release process of sediment nitrogen and phosphorus. The release of nitrogen and phosphorus from sediments is a complex process driven by multiple factors, therefore, we tested the influence of three factors (pH, temperature, and disturbance intensity) on the release of nitrogen and phosphorus from sediments in this study. The most amount of nitrate nitrogen (NO3–-N) was released under neutral conditions, while the most significant release of ammonia nitrogen (NH4+-N) occurred under acidic and alkaline conditions. The release of nitrite nitrogen (NO2–-N) was less affected by pH. The dissolved total phosphorus (DTP) released significantly in the alkaline water environment, while the release of dissolved organic phosphorus (DOP) was more significant in acidic water. The release amount of soluble reactive phosphorus (SRP) increased with an increase in pH. The sediments released nitrogen and phosphorus at higher temperatures, particularly NH4+-N, NO3–-N, and SRP. The highest amount of DOP was released at 15.0°C. An increase in disturbance intensity exacerbated the release of nitrogen and phosphorus from sediments. NH4+-N, DTP, and SRP levels increased linearly with the intensity of disturbance, while NO3–-N and NO2–-N were more stable. This study provides valuable information for protecting and restoring the water environment in arid areas and has significant practical reference value.

  • Utilizing sediment grain size characteristics to assess the effectiveness of clay–sand barriers in reducing aeolian erosion in Minqin desert area, China

    分类: 农、林、牧、渔 >> 土壤学 提交时间: 2024-05-15 合作期刊: 《干旱区科学》

    摘要: The clay–sand barriers in Minqin desert area, China, represent a pioneering windbreak and sand fixation project with a venerable history of 60 a. However, studies on evaluating the long-term effectiveness of clay–sand barriers against aeolian erosion, particularly from the perspective of surface sediment grain size, are limited and thus insufficient to ascertain the protective impact of these barriers on regional aeolian activities. This study focused on the surface sediments (topsoil of 0–3 cm depth) of clay–sand barriers in Minqin desert area to explain their erosion resistance from the perspective of surface sediment grain size. In March 2023, six clay–sand barrier sampling plots with clay–sand barriers of different deployment durations (1, 5, 10, 20, 40, and 60 a) were selected as experimental plots, and one control sampling plot was set in an adjacent mobile sandy area without sand barriers. Surface sediment samples were collected from the topsoil of each sampling plot in the study area in April 2023 and sediment grain size characteristics were analyzed. Results indicated a predominance of fine and medium sands in the surface sediments of the study area. The deployment of clay–sand barriers cultivated a fine quality in grain size composition of the regional surface sediments, increasing the average contents of very fine sand, silt, and clay by 30.82%, 417.38%, and 381.52%, respectively. This trend became markedly pronounced a decade after the deployment of clay–sand barriers. The effectiveness of clay–sand barriers in erosion resistance was manifested through reduced wind velocity, the interception of sand flow, and the promotion of fine surface sediment particles. Coarser particles such as medium, coarse, and very coarse sands predominantly accumulated on the external side of the barriers, while finer particles such as fine and very fine sands concentrated in the upwind (northwest) region of the barriers. By contrast, the contents of finest particles such as silt and clay were higher in the downwind (southeast) region of the sampling plots. For the study area, the deployment of clay–sand barriers remains one of the most cost-effective engineering solutions for aeolian erosion control, with sediment grain size parameters serving as quantitative indicators for the assessment of these barriers in combating desertification. The results of this study provide a theoretical foundation for the construction of windbreak and sand fixation systems and the optimization of artificial sand control projects in arid desert areas.

  • Wind tunnel test on the effect of metal net fences on sand flux in a Gobi Desert, China

    分类: 地球科学 >> 地理学 提交时间: 2017-11-07 合作期刊: 《干旱区科学》

    摘要: The Lanzhou-Xinjiang High-speed Railway runs through an expansive windy area in a Gobi Desert, and sand-blocking fences were built to protect the railway from destruction by wind-blown sand.