Processing math: 100%
按提交时间
按主题分类
按作者
按机构
  • Crystal structure of cyclic nucleotide-binding-like protein from Brucella abortus

    分类: 生物学 >> 生物物理学 >> 生物物理、生物化学与分子生物学 提交时间: 2016-05-15

    摘要: The cyclic nucleotide-binding (CNB)-like protein (CNB-L) from Brucella abortus shares sequence homology with CNB domain-containing proteins. We determined the crystal structure of CNB-L at 2.0 angstrom resolution in the absence of its C-terminal helix and nucleotide. The 3D structure of CNB-L is in a twofold symmetric form. Each protomer shows high structure similarity to that of cGMP-binding domain-containing proteins, and likely mimics their nucleotide-free conformation. A key residue, Glu17, mediates the dimerization and prevents binding of cNMP to the canonical ligand-pocket. The structurally observed dimer of CNB-L is stable in solution, and thus is likely to be biologically relevant. (C) 2015 Elsevier Inc. All rights reserved.

  • Rehabilitation of degraded areas in northeastern Patagonia, Argentina: Effects of environmental conditions and plant functional traits on performance of native woody species

    分类: 地球科学 >> 地球科学史 提交时间: 2020-10-20 合作期刊: 《干旱区科学》

    摘要: Degradation processes affect a vast area of arid and semi-arid lands around the world and damage the environment and people′s health. Degradation processes are driven by human productive activities that cause direct and indirect effects on natural resources, such as species extinction at regional scale, reduction and elimination of vegetation cover, soil erosion, etc. In this context, ecological rehabilitation is an important tool to recover key aspects of the degraded ecosystem. Rehabilitation trials rely on the use of native plant species with characteristics that allow them to obtain high survival and growth rates. The aim of this work was to assess the survival and growth of native woody species in degraded areas of northeastern Patagonia and relate them to plant functional traits and environmental variables. We observed high early and late survival rates, and growth rates in Prosopis flexuosa DC. var. depressa F.A. Roig and Schinus johnstonii F.A. Barkley, and low values in Condalia microphylla Cav. and Geoffroea decorticans (Gillies ex Hook. & Arn.) Burkart. Early survival rates were positively associated with specific leaf area (SLA) and precipitation, but negatively associated with wood density, the maximum mean temperature of the warmest month and the minimum mean temperature of the coldest month. Late survival rates were positively associated with SLA and soil organic matter, but negatively associated with plant height and precipitation. The temperature had a positive effect on late survival rates once the plants overcame the critical period of the first summer after they were transplanted to the field. Prosopis flexuosa and S. johnstonii were the most successful species in our study. This could be due to their functional traits that allow these species to acclimatize to the local environment. Further research should focus on C. microphylla and G. decorticans to determine how they relate to productive conditions, acclimation to environmental stress, auto-ecology and potential use in ecological rehabilitation trials.

  • Degradation of chitosan for rice crops application

    分类: 核科学技术 >> 核材料与工艺技术 提交时间: 2023-06-18 合作期刊: 《Nuclear Science and Techniques》

    摘要: A variety of techniques including chemical and enzymatic hydrolysis, and radiation degradation processes can be used to prepare low molecular weight chitosan. Degradation of chitosan by radiation can be carried out in solid state and liquid state. Radiation degraded polysaccharides has been reported to exhibit growth-stimulating activity like phytohormones thatinduce the promotion in germination, shoot and root elongation in variety of plants. In this study, the chitosan was irradiated in solid state (powder form) by gamma rays within the dose range of 25‒75 kGy. And the irradiated chitosan was then irradiated in solution form in the presence of hydrogen peroxide. The effects of irradiation on the molecular weight and viscosity of the chitosan were investigated using Ubbelohde Capillary Viscometer. The molecular weight and viscosity of the chitosan decreased with increment of absorbed doses. In the presence of hydrogen peroxide, the molecular weight of chitosan could be further decreased. The effect of radiation degraded chitosan on the growth promotion of rice was investigated and it was shown during seedling period of 15 days for transplanting whereby the growth is 15%‒20% faster than using chemicals growth promoters.

  • Structural evolution of energy embodied in final demand as economic growth empirical evidence from 25 countries

    分类: 管理学 >> 管理工程 提交时间: 2021-07-16

    摘要: Most countries of the world have put forward the goal of striving for carbon neutrality. The goal is hard to achieve by only relying on supply side solutions for the world. Most countries should pay more attention to the potential of energy conservation and emission reduction in the field of final demand. We construct an empirical analytic framework to investigate energy demand characteristics as economic growth from the perspective of final demand, and the results show a U-shaped curve relationship between the ratio of energy embodied in consumption to energy embodied in investment (REECEEI) and real gross domestic product per capita. The REECEEIs of major developing and developed countries are very different. Compare to the average baseline curve scenario, there is a notable conservation potential of energy embodied in final demand for major developing and developed countries. In climate negotiation, the demand for energy embodied in investment of developing countries should be guaranteed because it is the foundation of their economic development. To conserve energy and reduce emissions in the field of final demand, developing countries should focus on the field of energy embodied in investment, while developed countries should focus on the field of energy embodied in consumption.

  • Solvent Synthesis, Growth Mechanism and Photocatalytic Properties of AgInS2 Nanoplate and Nanoparticle

    分类: 化学 >> 物理化学 提交时间: 2017-11-05 合作期刊: 《结构化学》

    摘要: Orthorhombic AgInS2 nanoplate and nanoparticle were synthesized using pyridine and 1-dodecanethiol as the solvent. The obtained products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), field-emission transmission electron microscope (FETEM), and the possible growth mechanism of AgInS2 was also proposed by the exploration of reaction temperature and time. Meanwhile, the bandgap of AgInS2 was calculated by the UV-Vis diffuse reflectance spectrum, and the photocatalytic activity was also investigated. Those experimental results indicate that the reaction temperature, reaction time and solvent have an influence on phase and morphology of AgInS2, and both AgInS2 nanoplate and nanoparticle have some ability on photocatalytic degradation of organic dyes under UV-Vis light irradiation.

  • Determination of the basic optical parameters of ZnSnN2

    提交时间: 2017-05-02

    摘要: Polycrystalline ZnSnN2 thin films were successfully prepared by DC magnetron sputtering at room temperature. Both the as-deposited and annealed films showed n-type conduction, with electron concentration varying between 1.6 x 10[18] and 2.3 x 10[17] cm[-3

  • Direct observation of phase transformation in MnAl(C) alloys

    分类: 材料科学 >> 电子、光学、磁材料 提交时间: 2017-03-29

    摘要: The phase transformation in two modes, including both displacive and massive growth of τ-phase from ε-MnAl(C), was in situ observed. Temperature dependence of magnetization curves of MnAl(C) under magnetic field were employed for the first time to determine the triggering temperatures of different phase transformation modes. The displacive growth of ε→τ in MnAl(MnAlC) occurs at temperatures below 650 K(766 K), above which both modes coexist. One third or less of the ε-phase can be transformed into τ via displacive mode while the remaining two thirds or more via massive mode. Most large τ-grains formed via massive mode are actually containing a large number of well-distributed τ-nanocrystallline formed via displacive mode. The typical massive growth rate of the τ-phase is 8-60 nm/s, while the displacive growth rate is quite low. The doping of C to MnAl prevents the growth of ε-phase along the basal plane and thus increases the activation temperatures of the phase transformations and the decomposition of τ-phase. Pure τ-phase with highest magnetizations up to 118.3 Am2/kg was obtained. No decomposition was observed in τ-MnAl and τ-MnAl(C) after long-time annealing at selected temperatures, which are crucial in preventing the metastable τ phase from decomposition. These results provide a more complete understanding of the ε→τ phase transformations and thus facilitate the development of high-performance MnAl-based magnets.

  • Physio-biochemical and nutrient constituents of peanut plants under bentazone herbicide for broad-leaved weed control and water regimes in dry land areas

    分类: 地球科学 >> 地球科学史 提交时间: 2020-10-20 合作期刊: 《干旱区科学》

    摘要: The abundance of broad-leaved weeds in peanut fields represents the handicap in weed management programs, since limited specific herbicides can be recommended to control them. Moreover, the physio-biochemical constituents and nutritional status in peanut plants as affected by available herbicides, i.e., bentazone under water stress conditions are not well known. Therefore, field trials were conducted during the growing seasons in 2016 and 2017 to investigate the interactional impact of irrigation levels (I50, I75 and I100, representing irrigation by 50%, 75% and 100% of crop evapotranspiration, respectively) and weed control practices (bentazone, bentazone+hoeing once, hoeing twice and weedy check as control) on dominant broad-leaved weeds as well as peanut physiological and agronomic traits. Result indicated that the efficiency of weed control for each weeded treatment under I50 significantly equaled with its counterpart under I75 or I100. Bentazone+hoeing once diminished weed biomass by 89.3% and enhanced chlorophyll content of peanut plants by 51.2%. Bentazone relatively caused a reduction in carotenoides. Hoeing twice and bentazone+hoeing once under I100 in both growing seasons as well as hoeing twice under I75 in 2017 were the superior combinations for boosting pod yield of peanut plants. Treatment of bentazone+hoeing once and I75 recorded the lowest reduction in N utilization percentage and the highest increase in potassium utilization percentage of peanut plants. Eliminating weeds enhanced water use efficiency by 37.8%, 49.6% and 34.7% under I50, I75 and I100, respectively. In conclusion, peanut seems to be tolerant to bentazone at moderate water supply, thus it can be safely used in controlling the associated broad-leaved weeds.

  • Identification of EGFR kinase domain mutations among lung cancer patients in China: implication for targeted cancer therapy

    分类: 生物学 >> 生物医药 提交时间: 2017-03-30

    摘要: Lung cancer is one of the leading causes of death with one of the lowest survival rates. However, a subset of lung cancer patients who are of Asian origin and carry somatic mutations in epidermal growth factor receptor or EGFR have responded remarkable well to two tyrosine kinase inhibitors, gefitinib and erlotinib. While EGFR mutation profiles have been reported from Japan, South Korea, and Taiwan, there is no such report from mainland of China where the largest pool of patients reside. In this report, we identified ten somatic mutations from a total of 41 lung cancer patients in China. Among them, seven mutations were found in 17 adenocarcinomas. In contrast to previous reports, eight of these mutations are deletions in exon 19 and two of these deletions are homozygous. These results suggest that a large portion of Chinese adenocarcinoma patients could benefit from gefitinib or erlotinib. This unique mutation profile provides a rationale to develop the next generation of EGFR inhibitors more suitable for the Chinese population.

  • Coupling chromosomal replication to cell growth by the initiator protein DnaA in Escherichiacoli

    分类: 物理学 >> 交叉学科物理及相关领域的科学与技术 提交时间: 2016-05-08

    摘要: Cell cycle; Replication initiation; Cell growth; DnaA; RNA polymerase

  • Impacts of climate warming and crop management on maize phenology in northern China

    分类: 环境科学技术及资源科学技术 >> 环境科学技术基础学科 提交时间: 2019-12-06 合作期刊: 《干旱区科学》

    摘要: Climate warming has and will continue to exert a significantly impact on crop phenology in the past and coming decades. Combining observed data of phenology and a crop growth model provides a good approach for quantitating the effects of climate warming and crop management on crop phenology. The purpose of this study is to determine the impacts of temperature change, sowing date (SD) adjustment and cultivar shift on maize phenology in northern China during 1981–2010. Results indicated that climate warming caused anthesis date (AD) and maturity date (MD) of maize to advance by 0.2‒5.5 and 0.6‒11.1 d/10a, respectively. Due to climate-driven changes in maize phenology, three growth periods of maize, i.e., vegetative growth period (VGP; from sowing to anthesis), reproductive growth period (RGP; from anthesis to maturity) and whole growth period (WGP; from sowing to maturity) shortened by 0.2‒5.5, 0.4‒5.6 and 0.6‒11.1 d/10a, respectively. With SD adjustment (i.e., SD advancement), AD and MD occurred early by 0.5‒2.6 and 0.1‒3.4 d/10a, respectively. SD adjustment caused duration of VGP of maize to prolong. However, duration of RGP slightly shortened by 0.1‒1.3 d/10a. Furthermore, due to cultivar shift, MD of maize significantly delayed by 4.9‒12.2 d/10a. Durations of VGP, RGP and WGP of maize prolonged by 0.2‒4.1, 1.6‒8.4 and 4.3‒11.8 d/10a, respectively. In conclusion, our results indicated that cultivar shift, to some extent, could mitigate the negative impact of climate warming on maize phenology.

  • Impacts of climate warming and crop management on maize phenology in northern China

    分类: 环境科学技术及资源科学技术 >> 环境科学技术基础学科 提交时间: 2019-12-06 合作期刊: 《干旱区科学》

    摘要: Climate warming has and will continue to exert a significantly impact on crop phenology in the past and coming decades. Combining observed data of phenology and a crop growth model provides a good approach for quantitating the effects of climate warming and crop management on crop phenology. The purpose of this study is to determine the impacts of temperature change, sowing date (SD) adjustment and cultivar shift on maize phenology in northern China during 1981–2010. Results indicated that climate warming caused anthesis date (AD) and maturity date (MD) of maize to advance by 0.2‒5.5 and 0.6‒11.1 d/10a, respectively. Due to climate-driven changes in maize phenology, three growth periods of maize, i.e., vegetative growth period (VGP; from sowing to anthesis), reproductive growth period (RGP; from anthesis to maturity) and whole growth period (WGP; from sowing to maturity) shortened by 0.2‒5.5, 0.4‒5.6 and 0.6‒11.1 d/10a, respectively. With SD adjustment (i.e., SD advancement), AD and MD occurred early by 0.5‒2.6 and 0.1‒3.4 d/10a, respectively. SD adjustment caused duration of VGP of maize to prolong. However, duration of RGP slightly shortened by 0.1‒1.3 d/10a. Furthermore, due to cultivar shift, MD of maize significantly delayed by 4.9‒12.2 d/10a. Durations of VGP, RGP and WGP of maize prolonged by 0.2‒4.1, 1.6‒8.4 and 4.3‒11.8 d/10a, respectively. In conclusion, our results indicated that cultivar shift, to some extent, could mitigate the negative impact of climate warming on maize phenology.

  • Effects of water stress and NaCl stress on different life cycle stages of the cold desert annual Lachnoloma lehmannii in China

    分类: 环境科学技术及资源科学技术 >> 环境科学技术基础学科 提交时间: 2019-10-26 合作期刊: 《干旱区科学》

    摘要: For a plant species to complete its life cycle in arid and saline environments, each stage of the life cycle must be tolerant to the harsh environmental conditions. The aim of the study was to determine the effects of water stress (water potentials of –0.05, –0.16, –0.33, –0.56, –0.85 and –1.21 MPa) and NaCl stress (50, 100, 200, 300, 400, 500 and 600 mmol/L NaCl) on seed germination percentage, seedling survival and growth, juvenile growth and plant reproduction of Lachnoloma lehmannii Bunge (Brassicaceae), an cold desert annual that grows in the Junggar Basin of Xinjiang, China in 2010. Results indicated that low water stress (–0.05 and –0.16 MPa) had no significant effect on seed germination percentage. With a decrease in water potential, germination percentage decreased, and no seeds germinated at –0.85 and –1.21 MPa water stresses. Germination percentage of seeds was significantly affected by NaCl stress, and higher germination percentages were observed under non-saline than saline conditions. An increase in NaCl concentrations progressively inhibited seed germination percentage, and no seeds germinated at ≥400 mmol/L NaCl concentration. Non-germinated seeds were transferred from both PEG (polyethylene glycol-6000) and NaCl solutions to distilled water for seed germination recovery. The number of surviving seedlings and their heights and root lengths significantly decreased as NaCl stress increased. About 30% of the plants survived and produced fruits/seeds at 200 mmol/L NaCl concentration. Thus, seed germination, seedling establishment and reproductive stage in the life cycle of L. lehmannii are water- and salt-tolerant, with seedlings being the least tolerant. These tolerances help explain why this species can survive and produce seeds in arid and saline habitats.

  • Regularity for a minimum problem with free boundary in Orlicz spaces

    分类: 数学 >> 数学(综合) 提交时间: 2018-09-23

    摘要: The aim of this paper is to study the heterogeneous optimization problem \begin{align*} \mathcal {J}(u)=\int_{\Omega}(G(|\nabla u|)+qF(u^+)+hu+\lambda_{+}\chi_{\{u>0\}} )\text{d}x\rightarrow\text{min}, \end{align*} in the class of functions W^{1,G}(\Omega) with u-\varphi\in W^{1,G}_{0}(\Omega), for a given function \varphi, where W^{1,G}(\Omega) is the class of weakly differentiable functions with \int_{\Omega}G(|\nabla u|)\text{d}x0 respectively. We also establish growth rate near the free boundary for each non-negative minimizer of \mathcal {J}(u) with \lambda_+=0, and \lambda_+>0 respectively. Furthermore, under additional assumption that F\in C^1([0,+\infty); [0,+\infty)), local Lipschitz regularity is carried out for non-negative minimizers of \mathcal {J}(u) with \lambda_{+}>0.

  • Regularity in the two-phase free boundary problems under non-standard growth conditions

    分类: 数学 >> 数学(综合) 提交时间: 2018-09-22

    摘要: In this paper, we prove several regularity results for the heterogeneous, two-phase free boundary problems \mathcal {J}_{\gamma}(u)=\int_{\Omega}\big(f(x,\nabla u)+(\lambda_{+}(u^{+})^{\gamma}+\lambda_{-}(u^{-})^{\gamma})+gu\big)\text{d}x\rightarrow \text{min} under non-standard growth conditions. Included in such problems are heterogeneous jets and cavities of Prandtl-Batchelor type with \gamma=0, chemical reaction problems with 0 2 for p-Laplace equations, but also in the singular case of $1展开 -->

  • Effects of biological soil crusts on plant growth and nutrient dynamics in the Minqin oasis-desert ecotone, Northwest China

    分类: 生物学 >> 生态学 提交时间: 2025-01-14 合作期刊: 《干旱区科学》

    摘要: Biological soil crusts (BSCs) play crucial roles in improving soil fertility and promoting plants settlement and reproduction in arid areas. However, the specific effects of BSCs on growth status and nutrient accumulation of plants are still unclear in different arid areas. This study analyzed the effects of three different BSCs treatments (without crust (WC), intact crust (IC), and broken crust (BC)) on the growth, inorganic nutrient absorption, and organic solute synthesis of three typical desert plants (Grubovia dasyphylla (Fisch. C. A. Mey.) Freitag G. Kadereit, Nitraria tangutorum Bobrov, and Caragana koraiensis Kom.) in the Minqin desert-oasis ecotone of Northwest China. Results showed that the effects of three BSCs treatments on seed emergence and survival of three plants varied with seed types. The IC treatment significantly hindered the emergence and survival of seeds, while the BC treatment was more conducive to seed emergence and survival of plants. BSCs significantly promoted the growth of three plants, but their effects on plant growth varied at different stages of the growth. Briefly, the growth of G. dasyphylla was affected by BSCs in early stage, but the effects on the growth of G. dasyphylla significantly weakened in the middle and late stages. However, the growth of N. tangutorum and C. koraiensis only showed differences at the middle and late stages, with a significant enhancement in growth. Analysis of variance showed that BSCs, plant species, growth period, and their interactions had significant effects on the biomass and root: shoot ratio of three plants. BSC significantly affected the nutrients absorption and organic solute synthesis in plants. Specifically, BSCs significantly promoted nitrogen (N) absorption in plants and increased plant adaptability in N poor desert ecosystems, but had no significant effects on phosphorus (P) absorption. The effects of BSCs on inorganic nutrient absorption and organic solute synthesis in plants varied significantly among different plant species. The results suggest that BSCs have significant effects on the growth and nutrient accumulation of desert plants, which will provide theoretical basis for exploring the effects of BSCs on desert plant diversity, biodiversity conservation, and ecosystem management measures in arid and semi-arid areas.

  • Arbuscular mycorrhizal fungi improve biomass, photosynthesis, and water use efficiency of Opuntia ficus-indica (L.) Miller under different water levels

    分类: 生物学 >> 植物学 提交时间: 2023-08-15 合作期刊: 《干旱区科学》

    摘要: Opuntia ficus-indica (L.) Miller is a CAM (crassulacean acid metabolism) plant with an extraordinary capacity to adapt to drought stress by its ability to fix atmospheric CO2 at nighttime, store a significant amount of water in cladodes, and reduce root growth. Plants that grow in moisture-stress conditions with thick and less fine root hairs have a strong symbiosis with arbuscular mycorrhizal fungi (AMF) to adapt to drought stress. Water stress can limit plant growth and biomass production, which can be rehabilitated by AMF association through improved physiological performance. The objective of this study was to investigate the effects of AMF inoculations and variable soil water levels on the biomass, photosynthesis, and water use efficiency of the spiny and spineless O. ficus-indica. The experiment was conducted in a greenhouse with a full factorial experiment using O. ficus-indica type (spiny or spineless), AMF (presence or absence), and four soil water available (SWA) treatments through seven replications. Water treatments applied were 0%25% SWA (T1), 25%50% SWA (T2), 50%75% SWA (T3), and 75%100% SWA (T4). Drought stress reduced biomass and cladode growth, while AMF colonization significantly increased the biomass production with significant changes in the physiological performance of O. ficus-indica. AMF presence significantly increased biomass of both O. ficus-indica plant types through improved growth, photosynthetic water use efficiency, and photosynthesis. The presence of spines on the surface of cladodes significantly reduced the rate of photosynthesis and photosynthetic water use efficiency. Net photosynthesis, photosynthetic water use efficiency, transpiration, and stomatal conductance rate significantly decreased with increased drought stress. Under drought stress, some planted mother cladodes with the absence of AMF have not established daughter cladodes, whereas AMF-inoculated mother cladodes fully established daughter cladodes. AMF root colonization significantly increased with the decrease of SWA. AMF caused an increase in biomass production, increased tolerance to drought stress, and improved photosynthesis and water use efficiency performance of O. ficus-indica. The potential of O. ficus-indica to adapt to drought stress is controlled by the morpho-physiological performance related to AMF association.

  • Impacts of X-ray irradiation on Saccharomyces cerevisiae cells growth and physiological-biochemical characteristic

    分类: 核科学技术 >> 核材料与工艺技术 提交时间: 2023-06-18 合作期刊: 《Nuclear Science and Techniques》

    摘要: In this paper, the growth curves of yeast cells exposed to X-rays were detected, and then fitted by Gompertz equation. The yeast cells treated with 50125 Gy showed an increased exponential growth rate, and lower total biomass at plateau. At doses 150 Gy, cells showed a decreased exponential growth rate and higher total biomass at plateau. DNA lesions were detected by comet assay. Meanwhile, intracellular accumulation of reactive oxygen species (ROS), reduction of mitochondrial membrane potential (m) and cell membrane integrity were evaluated. We conclude that X-ray irradiation results in DNA lesions, ROS accumulation and m decline in a dose-dependent manner, and that these changes may be one of causes of X-rays-induced apoptosis in yeast. Furthermore, yeast cell membrane integrity appeared compromised following irradiation, suggesting that membrane damage may also have a role in the biological effects of radiation.

  • User Profiling for CSDN: Keyphrase Extraction, User Tagging and User Growth Value Prediction

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-11-27 合作期刊: 《数据智能(英文)》

    摘要: The Chinese Software Developer Network (CSDN) is one of the largest information technology communities and service platforms in China. This paper describes the user profiling for CSDN, an evaluation track of SMP Cup 2017. It contains three tasks: (1) user document keyphrase extraction, (2) user tagging and (3) user growth value prediction. In the first task, we treat keyphrase extraction as a classification problem and train a Gradient-Boosting-Decision-Tree model with comprehensive features. In the second task, to deal with class imbalance and capture the interdependency between classes, we propose a two-stage framework: (1) for each class, we train a binary classifier to model each class against all of the other classes independently; (2) we feed the output of the trained classifiers into a softmax classifier, tagging each user with multiple labels. In the third task, we propose a comprehensive architecture to predict user growth value. Our contributions in this paper are summarized as follows: (1) we extract various types of features to identify the key factors in user value growth; (2) we use the semi-supervised method and the stacking technique to extend labeled data sets and increase the generality of the trained model, resulting in an impressive performance in our experiments. In the competition, we achieved the first place out of 329 teams.

  • Effect of soil management on soil erosion on sloping farmland during crop growth stages under a large-scale rainfall simulation experiment

    分类: 地球科学 >> 地球科学史 提交时间: 2018-10-29 合作期刊: 《干旱区科学》

    摘要: Soil erosion on farmland is a critical environmental issue and the main source of sediment in the Yellow River, China. Thus, great efforts have been made to reduce runoff and soil loss by restoring vegetation on abandoned farmland. However, few studies have investigated runoff and soil loss from sloping farmland during crop growth season. The objective of this study was to investigate the effects of soil management on runoff and soil loss on sloping farmland during crop growth season. We tested different soybean growth stages (i.e., seedling stage (R1), initial blossoming stage (R2), full flowering stage (R3), pod bearing stage (R4), and initial filling stage (R5)) and soil management practice (one plot applied hoeing tillage (HT) before each rainfall event, whereas the other received no treatment (NH)) by applying simulated rainfall at an intensity of 80 mm/h. Results showed that runoff and soil loss both decreased and infiltration amount increased in successive soybean growth stages under both treatments. Compared with NH plot, there was less runoff and higher infiltration amount from HT plot. However, soil loss from HT plot was larger than that from NH plot in R1–R3, but lower in R4 and R5. In the early growth stages, hoeing tillage was effective for reducing runoff and enhancing rainfall infiltration. By contrast, hoeing tillage enhanced soil and water conservation during the late growth stages. The total soil loss from HT plot (509.0 g/m2) was 11.1% higher than that from NH plot (457.9 g/m2) in R1–R5. However, the infiltration amount from HT plot (313.9 mm) was 18.4% higher than that from NH plot (265.0 mm) and the total runoff volume from HT plot was 49.7% less than that from NH plot. These results indicated that crop vegetation can also act as a type of vegetation cover and play an important role on sloping farmland. Thus, adopting rational soil management in crop planting on sloping farmland can effectively reduce runoff and soil loss, as well as maximize rainwater infiltration during crop growth period.