按提交时间
按主题分类
按作者
按机构
  • Propagation characteristics from meteorological drought to agricultural drought over the Heihe River Basin, Northwest China

    分类: 地球科学 >> 大气科学 提交时间: 2023-05-11 合作期刊: 《干旱区科学》

    摘要:In the context of global warming, drought events occur frequently. In order to better understanding the process and mechanism of drought occurrence and evolution, scholars have dedicated much attention on drought propagation, mainly focusing on drought propagation time and propagation probability. However, there are relatively few studies on the sensitivities of drought propagation to seasons and drought levels. Therefore, we took the Heihe River Basin (HRB) of Northwest China as the case study area to quantify the propagation time and propagation probability from meteorological drought to agricultural drought during the period of 1981–2020, and subsequently explore their sensitivities to seasons (irrigation and non-irrigation seasons) and drought levels. The correlation coefficient method and Copula-based interval conditional probability model were employed to determine the drought propagation time and propagation probability. The results determined the average drought propagation time as 8 months in the whole basin, which was reduced by 2 months (i.e., 6 months) on average during the irrigation season and prolonged by 2 months (i.e., 10 months) during the non-irrigation season. Propagation probability was sensitive to both seasons and drought levels, and the sensitivities had noticeable spatial differences in the whole basin. The propagation probability of agricultural drought at different levels generally increased with the meteorological drought levels for the upstream, midstream, and southern downstream regions of the HRB. Lesser agricultural droughts were more likely to be triggered during the irrigation season, while severer agricultural droughts were occurred mostly during the non-irrigation season. The research results are helpful to understand the characteristics of drought propagation and provide a scientific basis for the prevention and control of droughts. This study is of great significance for the rational planning of local water resources and maintaining good ecological environment in the HRB.

  • Spatiotemporal analysis of drought variability based on the standardized precipitation evapotranspiration index in the Koshi River Basin, Nepal

    分类: 地球科学 >> 地理学 提交时间: 2021-06-04 合作期刊: 《干旱区科学》

    摘要: Drought is an inevitable condition with negative impacts in the agricultural and climatic sectors, especially in developing countries. This study attempts to examine the spatial and temporal characteristics of drought and its trends in the Koshi River Basin (KRB) in Nepal, using the standardized precipitation evapotranspiration index (SPEI) over the period from 1987 to 2017. The Mann-Kendall test was used to explore the trends of the SPEI values. The study illustrated the increasing annual and seasonal drought trends in the KRB over the study period. Spatially, the hill region of the KRB showed substantial increasing drought trends at the annual and seasonal scales, especially in summer and winter. The mountain region also showed a significant increasing drought trend in winter. The drought characteristic analysis indicated that the maximum duration, intensity, and severity of drought events were observed in the KRB after 2000. The Terai region presented the highest drought frequency and intensity, while the hill region presented the longest maximum drought duration. Moreover, the spatial extent of drought showed a significant increasing trend in the hill region at the monthly (drought station proportion of 7.6%/10a in August), seasonal (drought station proportion of 7.2%/10a in summer), and annual (drought station proportion of 6.7%/10a) scales. The findings of this study can assist local governments, planners, and project implementers in understanding drought and developing appropriate mitigation strategies to cope with its impacts.

  • Spatial-temporal characteristics of drought detected from meteorological data with high resolution in Shaanxi Province, China

    分类: 地球科学 >> 地球科学史 提交时间: 2020-10-20 合作期刊: 《干旱区科学》

    摘要: The spatial pattern of meteorological factors cannot be accurately simulated by using observations from meteorological stations (OMS) that are distributed sparsely in complex terrain. It is expected that the spatial-temporal characteristics of drought in regions with complex terrain can be better represented by meteorological data with the high spatial-temporal resolution and accuracy. In this study, Standard Precipitation Evapotranspiration Index (SPEI) calculated with meteorological factors extracted from ITPCAS (China Meteorological Forcing Dataset produced by the Institute of Tibetan Plateau Research, Chinese Academy of Sciences) was applied to identify the spatial-temporal characteristics of drought in Shaanxi Province of China, during the period of 1979–2016. Drought areas detected by SPEI calculated with data from ITPCAS (SPEI-ITPCAS) on the seasonal scale were validated by historical drought records from the Chinese Meteorological Disaster Canon-Shaanxi, and compared with drought areas detected by SPEI calculated with data from OMS (SPEI-OMS). Drought intensity, trend and temporal ranges for mutations of SPEI-ITPCAS were analyzed by using the cumulative drought intensity (CDI) index and the Mann-Kendall test. The results indicated that drought areas detected from SPEI-ITPCAS were closer to the historical drought records than those detected from SPEI-OMS. Severe and exceptional drought events with SPEI-ITPCAS lower than –1.0 occurred most frequently in summer, followed by spring. There was a general drying trend in spring and summer in Shaanxi Province and a significant wetting trend in autumn and winter in northern Shaanxi Province. On seasonal and annual scales, the regional and temporal ranges for mutations of SPEI-ITPCAS were different and most mutations occurred before the year 1990 in most regions of Shaanxi Province. The results reflect the response of different regions of Shaanxi Province to climate change, which will help to manage regional water resources.

  • A drought resistance index to select drought resistant plant species based on leaf water potential measurements

    分类: 地球科学 >> 地理学 提交时间: 2019-08-30 合作期刊: 《干旱区科学》

    摘要: The water deficit in arid and semi-arid regions is the primary limiting factor for the development of urban greenery and forestation. In addition, planting the species that consume low levels of water is useful in arid and semi-arid regions that have poor water management measures. Leaf water potential (Ψ) is a physiological parameter that can be used to identify drought resistance in various species. Indeed, Ψ is one of the most important properties of a plant that can be measured using a pressure chamber. Drought avoiding or drought resistant species have a lower Ψ than plants that use normal or high levels of water. To determine drought resistance of species that are suitable for afforestation in arid urban regions, we evaluated twenty woody species in the Isfahan City, central Iran. The experimental design was random split-split plots with five replications. The species were planted outdoor in plastic pots and then subjected to treatments that consisted of two soil types and five drip irrigation regimes. To evaluate the resistance of each species to drought, we used the Ψ and the number of survived plants to obtain the drought resistance index (DRI). Then, cluster analysis, dendrogram, and similarity index were used to group the species using DRI. Result indicates that the evaluated species were classified into five groups: (1) high water consuming species (DRI>–60 MPa); (2) above normal water consuming species (–60 MPa≥DRI>–90 MPa); (3) normal water consuming species (–90 MPa≥DRI>–120 MPa); (4) semi-drought resistant species (–120 MPa≥DRI>–150 MPa); and (5) drought resistant species (DRI≤–150 MPa). According to the DRI, Salix babylonica L., Populus alba L., and P. nigra L. are high water consuming species, Platanus orientalis L. and Albizia julibrissin Benth are normal water consuming species, and Quercus infectoria Oliv. and Olea europaea L. can be considered as drought resistant species.

  • Influence of varied drought types on soil conservation service within the framework of climate change: insights from the Jinghe River Basin, China

    分类: 地球科学 >> 地球科学其他学科 提交时间: 2024-02-21 合作期刊: 《干旱区科学》

    摘要: Severe soil erosion and drought are the two main factors affecting the ecological security of the Loess Plateau, China. Investigating the influence of drought on soil conservation service is of great importance to regional environmental protection and sustainable development. However, there is little research on the coupling relationship between them. In this study, focusing on the Jinghe River Basin, China as a case study, we conducted a quantitative evaluation on meteorological, hydrological, and agricultural droughts (represented by the Standardized Precipitation Index (SPI), Standardized Runoff Index (SRI), and Standardized Soil Moisture Index (SSMI), respectively) using the Variable Infiltration Capacity (VIC) model, and quantified the soil conservation service using the Revised Universal Soil Loss Equation (RUSLE) in the historical period (2000–2019) and future period (2026–2060) under two Representative Concentration Pathways (RCPs) (RCP4.5 and RCP8.5). We further examined the influence of the three types of drought on soil conservation service at annual and seasonal scales. The NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset was used to predict and model the hydrometeorological elements in the future period under the RCP4.5 and RCP8.5 scenarios. The results showed that in the historical period, annual-scale meteorological drought exhibited the highest intensity, while seasonal-scale drought was generally weakest in autumn and most severe in summer. Drought intensity of all three types of drought will increase over the next 40 years, with a greater increase under the RCP4.5 scenario than under the RCP8.5 scenario. Furthermore, the intra-annual variation in the drought intensity of the three types of drought becomes smaller under the two future scenarios relative to the historical period (2000–2019). Soil conservation service exhibits a distribution pattern characterized by high levels in the southwest and southeast and lower levels in the north, and this pattern has remained consistent both in the historical and future periods. Over the past 20 years, the intra-annual variation indicated peak soil conservation service in summer and lowest level in winter; the total soil conservation of the Jinghe River Basin displayed an upward trend, with the total soil conservation in 2019 being 1.14 times higher than that in 2000. The most substantial impact on soil conservation service arises from annual-scale meteorological drought, which remains consistent both in the historical and future periods. Additionally, at the seasonal scale, meteorological drought exerts the highest influence on soil conservation service in winter and autumn, particularly under the RCP4.5 and RCP8.5 scenarios. Compared to the historical period, the soil conservation service in the Jinghe River Basin will be significantly more affected by drought in the future period in terms of both the affected area and the magnitude of impact. This study conducted beneficial attempts to evaluate and predict the dynamic characteristics of watershed drought and soil conservation service, as well as the response of soil conservation service to different types of drought. Clarifying the interrelationship between the two is the foundation for achieving sustainable development in a relatively arid and severely eroded area such as the Jinghe River Basin.

  • Meteorological drought in semi-arid regions: A case study of Iran

    分类: 地球科学 >> 地理学 提交时间: 2022-11-12 合作期刊: 《干旱区科学》

    摘要:Drought occurs in almost all climate zones and is characterized by prolonged water deficiency due to unbalanced demand and supply of water, persistent insufficient precipitation, lack of moisture, and high evapotranspiration. Drought caused by insufficient precipitation is a temporary and recurring meteorological event. Precipitation in semi-arid regions is different from that in other regions, ranging from 50 to 750 mm. In general, the semi-arid regions in the west and north of Iran received more precipitation than those in the east and south. The Terrestrial Climate (TerraClimate) data, including monthly precipitation, minimum temperature, maximum temperature, potential evapotranspiration, and the Palmer Drought Severity Index (PDSI) developed by the University of Idaho, were used in this study. The PDSI data was directly obtained from the Google Earth Engine platform. The Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) on two different scales were calculated in time series and also both SPI and SPEI were shown in spatial distribution maps. The result showed that normal conditions were a common occurrence in the semi-arid regions of Iran over the majority of years from 2000 to 2020, according to a spatiotemporal study of the SPI at 3-month and 12-month time scales as well as the SPEI at 3-month and 12-month time scales. Moreover, the PDSI detected extreme dry years during 2000–2003 and in 2007, 2014, and 2018. In many semi-arid regions of Iran, the SPI at 3-month time scale is higher than the SPEI at 3-month time scale in 2000, 2008, 2014, 2015, and 2018. In general, this study concluded that the semi-arid regions underwent normal weather conditions from 2000 to 2020. In a way, moderate, severe, and extreme dry occurred with a lesser percentage, gradually decreasing. According to the PDSI, during 2000–2003 and 2007–2014, extreme dry struck practically all hot semi-arid regions of Iran. Several parts of the cold semi-arid regions, on the other hand, only experienced moderate to severe dry from 2000 to 2003, except for the eastern areas and wetter regions. The significance of this study is the determination of the spatiotemporal distribution of meteorological drought in semi-arid regions of Iran using strongly validated data from TerraClimate.

  • Response of hydrological drought to meteorological drought in the eastern Mediterranean Basin of Turkey

    分类: 地球科学 >> 地理学 提交时间: 2021-06-04 合作期刊: 《干旱区科学》

    摘要: The hydrographic eastern Mediterranean Basin of Turkey is a drought sensitive area. The basin is an important agricultural area and it is necessary to determine the extent of extreme regional climatic changes as they occur in this basin. Pearson's correlation coefficient was used to show the correlation between standardized precipitation index (SPI) and standardized streamflow index (SSI) values on different time scales. Data from five meteorological stations and seven stream gauging stations in four sub-basins of the eastern Mediterranean Basin were analyzed over the period from 1967 to 2017. The correlation between SSI and SPI indicated that in response to meteorological drought, hydrological drought experiences a one-year delay then occurs in the following year. This is more evident at all stations from the mid-1990s. The main factor causing hydrological drought is prolonged low precipitation or the presence of a particularly dry year. Results showed that over a long period (12 months), hydrological drought is longer and more severe in the upper part than the lower part of the sub-basins. According to SPI-12 values, an uninterrupted drought period is observed from 2002–2003 to 2008–2009. Results indicated that among the drought events, moderate drought is the most common on all timescales in all sub-basins during the past 51 years. Long-term dry periods with moderate and severe droughts are observed for up to 10 years or more since the late 1990s, especially in the upper part of the sub-basins. As precipitation increases in late autumn and early winter, the stream flow also increases and thus the highest and most positive correlation values (0.26–0.54) are found in January. Correlation values (ranging between –0.11 and –0.01) are weaker and negative in summer and autumn due to low rainfall. This is more evident at all stations in September. The relation between hydrological and meteorological droughts is more evident, with the correlation values above 0.50 on longer timescales (12- and 24-months). The results presented in this study allow an understanding of the characteristics of drought events and are instructive for overcoming drought. This will facilitate the development of strategies for the appropriate management of water resources in the eastern Mediterranean Basin, which has a high agricultural potential.

  • Performance of different drought indices for agriculture drought in the North China Plain

    分类: 地球科学 >> 水文学 提交时间: 2018-07-05 合作期刊: 《干旱区科学》

    摘要: The Palmer drought severity index (PDSI), standardized precipitation index (SPI), and standardized precipitation evapotranspiration index (SPEI) are used worldwide for drought assessment and monitoring. However, substantial differences exist in the performance for agricultural drought among these indices and among regions. Here, we performed statistical assessments to compare the strengths of different drought indices for agricultural drought in the North China Plain. Small differences were detected in the comparative performances of SPI and SPEI that were smaller at the long-term scale than those at the short-term scale. The correlation between SPI/SPEI and PDSI considerably increased from 1- to 12-month lags, and a slight decreasing trend was exhibited during 12- and 24-month lags, indicating a 12-month scale in the PDSI, whereas the SPI was strongly correlated with the SPEI at 1- to 24-month lags. Interestingly, the correlation between the trend of temperature and the mean absolute error and its correlation coefficient both suggested stronger relationships between SPI and the SPEI in areas of rapid climate warming. In addition, the yielddrought correlations tended to be higher for the SPI and SPEI than that for the PDSI at the station scale, whereas small differences were detected between the SPI and SPEI in the performance on agricultural systems. However, large differences in the influence of drought conditions on the yields of winter wheat and summer maize were evident among various indices during the crop-growing season. Our findings suggested that multi-indices in drought monitoring are needed in order to acquire robust conclusions.

  • Monitoring vegetation drought in the nine major river basins of China based on a new developed Vegetation Drought Condition Index

    分类: 地球科学 >> 地理学 提交时间: 2023-12-18 合作期刊: 《干旱区科学》

    摘要: The effect of global climate change on vegetation growth is variable. Timely and effective monitoring of vegetation drought is crucial for understanding its dynamics and mitigation, and even regional protection of ecological environments. In this study, we constructed a new drought index (i.e., Vegetation Drought Condition Index (VDCI)) based on precipitation, potential evapotranspiration, soil moisture and Normalized Difference Vegetation Index (NDVI) data, to monitor vegetation drought in the nine major river basins (including the Songhua River and Liaohe River Basin, Haihe River Basin, Yellow River Basin, Huaihe River Basin, Yangtze River Basin, Southeast River Basin, Pearl River Basin, Southwest River Basin and Continental River Basin) in China at 1-month12-month (T1T12) time scales. We used the Pearson's correlation coefficients to assess the relationships between the drought indices (the developed VDCI and traditional drought indices including the Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Soil Moisture Index (SSMI) and Self-calibrating Palmer Drought Severity Index (scPDSI)) and the NDVI at T1T12 time scales, and to estimate and compare the lag times of vegetation response to drought among different drought indices. The results showed that precipitation and potential evapotranspiration have positive and major influences on vegetation in the nine major river basins at T1T6 time scales. Soil moisture shows a lower degree of negative influence on vegetation in different river basins at multiple time scales. Potential evapotranspiration shows a higher degree of positive influence on vegetation, and it acts as the primary influencing factor with higher area proportion at multiple time scales in different river basins. The VDCI has a stronger relationship with the NDVI in the Songhua River and Liaohe River Basin, Haihe River Basin, Yellow River Basin, Huaihe River Basin and Yangtze River Basin at T1T4 time scales. In general, the VDCI is more sensitive (with shorter lag time of vegetation response to drought) than the traditional drought indices (SPEI, scPDSI and SSMI) in monitoring vegetation drought, and thus it could be applied to monitor short-term vegetation drought. The VDCI developed in the study can reveal the law of unclear mechanisms between vegetation and climate, and can be applied in other fields of vegetation drought monitoring with complex mechanisms.

  • Comparative microbiome analysis of core drought responsive microbiome

    分类: 生物学 >> 微生物学 分类: 生物学 >> 植物学 提交时间: 2024-07-10

    摘要: Plants evolved sophisticated genetic and metabolic mechanisms to shape their “core microbiome” under normal growth conditions. However, whether natural plant ecotypes re-shape a core “stress responsive microbiome” remains elusive. Considering that drought is the most serious abiotic stress worldwide, we conducted comparative microbiome analysis to study the potential conserved core root microbiome changes upon drought stress in natural Arabidopsis ecotypes. We screened the drought tolerance of 130 worldwide Arabidopsis ecotypes, and chose the extremely drought tolerant and sensitive ecotypes for comparative microbiome studies. We detected diverse differentially abundant ASVs , network driver taxa, as well as key functions pathways shared in diverse ecotypes upon drought stress, indicating the existence of some core drought-responsive microbiome changes. Our work unveiled the existence of a core drought-responsive microbiome and its critical role in enhancing plant fitness. This work also provided a research paradigm for guiding the discovery of stress-alleviating microbiomes in sustainable agriculture using natural ecotypes.

  • Exogenously applied glycinebetaine induced alteration in some key physio-biochemical attributes and plant anatomical features in water stressed oat (Avena sativa L.) plants

    分类: 生物学 >> 生理学 提交时间: 2019-03-28 合作期刊: 《干旱区科学》

    摘要: Although exogenous application of glycinebetaine (GB) is widely reported to regulate a myriad of physio-biochemical attributes in plants under stressful environments including drought stress, there is little information available in the literature on how and up to what extent GB can induce changes in anatomical features in water starved plants. Thus, the present research work was conducted to assess the GB-induced changes in growth, physio-biochemical, and anatomical characteristics in two cultivars (CK-1 and F-411) of oat (Avena sativa L.) under limited water supply. After exposure to water stress, a considerable reduction was observed in plant growth in terms of lengths and weights of shoot and roots, leaf mesophyll thickness, leaf midrib thickness, root cortex thickness, root diameter, stem diameter, stem phloem area, and stem vascular bundle area in both oat cultivars. However, water stress resulted in a significant increase in leaf total phenolics, hydrogen peroxide (H2O2), ascorbic acid (AsA), GB contents, activities of enzymes (CAT, SOD and POD), total soluble proteins, leaf epidermis (abaxial and adaxial) thickness, bulliform cell area, sclerenchyma thickness, root endodermis and epidermis thickness, root metaxylem area, stem metaxylem area and stem sclerenchyma thickness in both oat cultivars. Foliar-applied 100 mM GB suppressed H2O2 contents, while improved growth attributes, free proline and GB contents, activity of SOD enzyme, leaf abaxial epidermis thickness, leaf bulliform cell area, leaf midrib thickness, leaf sclerenchyma thickness, root cortex thickness, root endodermis, epidermis thickness, root stele diameter, stem diameter, stem epidermis thickness, stem metaxylem area, and stem phloem and vascular bundle area in both oat cultivars. For both oat cultivars, CK-1 was superior to F-411 in leaf abaxial epidermis thickness, leaf mesophyll, leaf sclerenchyma, root metaxylem area, stem diameter, stem epidermis, sclerenchyma thickness, stem metaxylem area, and stem vascular bundle area. Overall, both oat cultivars showed inconsistent behavior to water stress and foliar-applied GB in terms of different physio-biochemical attributes, however, CK-1 was superior to F-411 in a number of anatomical features of leaf, root, and stem.

  • Effect of water deficiency on relationships between metabolism, physiology, biomass, and yield of upland cotton (Gossypium hirsutum L.)

    分类: 物理学 >> 普通物理:统计和量子力学,量子信息等 提交时间: 2018-04-24 合作期刊: 《干旱区科学》

    摘要: Drought is a common abiotic stress that considerably limits crop production. The objective of this study is to explore the influence of water deficiency on the yield, physiologic and metabolomic attributes in upland cotton cultivars (Gossypium hirsutum L). Cotton cultivars, 'Ishonch' and 'Tashkent-6' were selected to study the relationships among their physiologic, metabolomic and yield attributes during water deficiency. Deficit irrigation was designed by modifying the traditional watering protocol to reduce water use. Results indicate that cotton cultivars respond differently to water deficit stress. Water deficit significantly influenced plant height, the number of internodes, and sympodial branches in both cultivars. However, yield components such as the number of bolls, boll seed, lint mass, and individual plant yield were significantly reduced only in 'Tashkent-6'. The leaf area decreased and the specific leaf weight increased in 'Ishonch' under deficit irrigation conditions. However, 'Tashkent-6' demonstrated significant water loss compared to 'Ishonch', and both cultivars showed reduced transpiration rates. Untargeted metabolite profiles of leaves showed clear separation in 'Ishonch', but not in 'Tashkent-6' under deficit irrigation compared to full irrigation. The individual metabolites such as proline and galactinol showed strong association with yield under water deficit stress. Moreover, this study indicates that leaf area and transpiration intensity influence yield during water deficiency. In summary, the correlation among morpho-physiologic, metabolic, and yield components significantly varied between the two cultivars under water deficiency. The flowering stage was sensitive to water stress for both cultivars. The direct relationship between physiology, metabolism, and yield may be a useful selection criterion for determining candidate parents for cotton drought tolerance breeding.

  • Prediction of meteorological drought in arid and semi-arid regions using PDSI and SDSM: a case study in Fars Province, Iran

    分类: 地球科学 >> 地球科学史 提交时间: 2020-06-22 合作期刊: 《干旱区科学》

    摘要: Drought is one of the most significant environmental disasters, especially in arid and semi-arid regions. Drought indices as a tool for management practices seeking to deal with the drought phenomenon are widely used around the world. One of these indicators is the Palmer drought severity index (PDSI), which is used in many parts of the world to assess the drought situation and continuation. In this study, the drought state of Fars Province in Iran was evaluated by using the PDSI over 1995–2014 according to meteorological data from six weather stations in the province. A statistical downscaling model (SDSM) was used to apply the output results of the general circulation model in Fars Province. To implement data processing and prediction of climate data, a statistical period 1995–2014 was considered as the monitoring period, and a statistical period 2019–2048 was for the prediction period. The results revealed that there is a good agreement between the simulated precipitation (R2>0.63; R2, determination coefficient; MAE0.95, MAE<1.74, and RMSE<1.78) with the observed data from the stations. The results of the drought monitoring model presented that dry periods would increase over the next three decades as compared to the historical data. The studies showed the highest drought in the meteorological stations Abadeh and Lar during the prediction period under two future scenarios representative concentration pathways (RCP4.5 and RCP8.5). According to the results of the validation periods and efficiency criteria, we suggest that the SDSM is a proper tool for predicting drought in arid and semi-arid regions.

  • Responses of leaf water potential and gas exchange to the precipitation manipulation in two shrubs on the Chinese Loess Plateau

    分类: 物理学 >> 普通物理:统计和量子力学,量子信息等 提交时间: 2020-06-22 合作期刊: 《干旱区科学》

    摘要: Regulation of leaf gas exchange plays an important role in the survival of trees and shrubs under future climate change. However, the responses of leaf water potential and gas exchange of shrubs in semi-arid areas to the precipitation alteration are not clear. Here, we conducted a manipulated experiment with three levels of precipitation, i.e., a control with ambient precipitation, 50% above ambient precipitation (irrigation treatment), and 50% below ambient precipitation (drought treatment), with two common shrubs, Salix psammophila C. Wang & C. Y. Yang (isohydric plant, maintaining a constant leaf water potential by stomatal regulation) and Caragana korshinskii Kom. (anisohydric plant, having more variable leaf water potential), on the Chinese Loess Plateau in 2014 and 2015. We measured the seasonal variations of predawn and midday leaf water potential (pd and md), two parameters of gas exchange, i.e., light-saturated assimilation (An) and stomatal conductance (gs), and other foliar and canopy traits. The isohydric S. psammophila had a similar An and a higher gs than the anisohydric C. korshinskii under drought treatment in 2015, inconsistent with the view that photosynthetic capacity of anisohydric plants is higher than isohydric plants under severe drought. The two shrubs differently responded to precipitation manipulation. pd, An and gs were higher under irrigation treatment than control for S. psammophila, and these three variables and md were significantly higher under irrigation treatment and lower under drought treatment than control for C. korshinskii. Leaf water potential and gas exchange responded to manipulated precipitation more strongly for C. korshinskii than for S. psammophila. However, precipitation manipulation did not alter the sensitivity of leaf gas exchange to vapor-pressure deficit and soil moisture in these two shrubs. Acclimation to long-term changes in soil moisture in these two shrubs was primarily attributed to the changes in leaf or canopy structure rather than leaf gas exchange. These findings will be useful for modeling canopy water-carbon exchange and elucidating the adaptive strategies of these two shrubs to future changes in precipitation.

  • Flood and drought tolerance in rice: opposite but may coexist

    分类: 生物学 >> 植物学 >> 植物生态学和植物地理学 提交时间: 2016-05-30

    摘要: Flood and drought are the two most prevalent abiotic stresses causing major yield reduction globally. In the last decade, molecular mechanisms of flood tolerance in rice have been revealed with successful release of flash flood-tolerant varieties to farmers. However, despite extensive research, the breakthrough of drought tolerance is still to come. In this review, we have examined the distribution and population types of drought-and flood-tolerant rice accessions, synthesized recent progresses of flood and drought tolerance research, and proposed a hypothesis that the molecular mechanisms of both drought and flood tolerance may be regulated by cross-talked pathways and coexist in aus subpopulation.We conclude that it is the time to mine the key regulator(s) of drought tolerance through de novo assembly of drought-tolerant aus landrace(s) with other molecular approaches and develop drought-tolerant rice using genome manipulation weaponry.

  • Small RNA and degradome deep sequencing reveals drought‐and tissue‐specific micrornas and their important roles in drought‐sensitive and drought‐tolerant tomato genotypes

    分类: 生物学 >> 植物学 >> 植物生物化学、植物生物物理学 提交时间: 2016-05-04

    摘要: Drought stress has adverse impacts on plant production and productivity. MicroRNAs (miRNAs) are one class of noncoding RNAs regulating gene expression post-transcriptionally. In this study, we employed small RNA and degradome sequencing to systematically investigate the tissue-specific miRNAs responsible to drought stress, which are understudied in tomato. For this purpose, root and upground tissues of two different drought-responsive tomato genotypes (Lycopersicon esculentum as sensitive and L. esculentum var. cerasiforme as tolerant) were subjected to stress with 5% polyethylene glycol for 7days. A total of 699 conserved miRNAs belonging to 578 families were determined and 688 miRNAs were significantly differentially expressed between different treatments, tissues and genotypes. Using degradome sequencing, 44 target genes were identified associated with 36 miRNA families. Drought-related miRNAs and their targets were enriched functionally by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Totally, 53 miRNAs targeted 23 key drought stress- and tissue development-related genes, including DRP (dehydration-responsive protein), GTs (glycosyltransferases), ERF (ethylene responsive factor), PSII (photosystem II) protein, HD-ZIP (homeodomain-leucine zipper), MYB and NAC-domain transcription factors. miR160, miR165, miR166, miR171, miR398, miR408, miR827, miR9472, miR9476 and miR9552 were the key miRNAs functioning in regulation of these genes and involving in tomato response to drought stress. Additionally, plant hormone signal transduction pathway genes were differentially regulated by miR169, miR172, miR393, miR5641, miR5658 and miR7997 in both tissues of both sensitive and tolerant genotypes. These results provide new insight into the regulatory role of miRNAs in drought response with plant hormone signal transduction and drought-tolerant tomato breeding.

  • Improved drought tolerance in Festuca ovina L. using plant growth promoting bacteria

    分类: 生物学 >> 生态学 提交时间: 2023-06-13 合作期刊: 《干旱区科学》

    摘要:Numerous ecological factors influence a plant's ability to live and grow, in which dryness is a substantial constraint on plant growth in arid and semi-arid areas. In response to a specific environmental stress, plants can use the most effective bacteria to support and facilitate their growth and development. Today, plant growth promoting rhizobacteria (PGPR) is widely used to reduce drought stress on plant growth. In this study, the effects of drought on Festuca ovina L. germination, growth, and nutrient absorption were investigated using PGPR in a factorial test with a completely random design under four water regimes. Soil water content was kept at 100% FC (field capacity), 70% FC (FC), 50% FC, and 30% FC. The treatments were inoculated with Azotobacter vinelandii, Pantoea agglomerans+Pseudomonas putida, and a mixture of bio-fertilizers. Results showed that the effects of drought stress were significantly reduced (P<0.05) when A. vinelandii and P. agglomerans+P. putida were used separately, however, the combined treatment of bio-fertilizers had a greater influence on seed germination than the single application. P. agglomerans+P. putida under 30% FC condition resulted in higher increases in stem, root length, and plant dry biomass. The highest uptake of nutrients was observed for the combined treatment of bio-fertilizers under 30% FC condition. Therefore, the use of A. vinelandii and P. agglomerans+P. putida, applied separately or combined, increased tolerance to drought stress in F. ovina by increased germination indices, dry weight, stem length, and root length. Because of the beneficial effects of PGPR on the growth characteristics of plants under drought conditions and the reduction of negative effects of drought stress, inoculating F. ovina seeds with Azotobacter and Pseudomonas is recommended to improve their growth and development characteristics under drought conditions. PGPR, as an affordable and environmentally friendly method, can improve the production of forage in water-stress rangelands.
     

  • Physio-biochemical and nutrient constituents of peanut plants under bentazone herbicide for broad-leaved weed control and water regimes in dry land areas

    分类: 地球科学 >> 地球科学史 提交时间: 2020-10-20 合作期刊: 《干旱区科学》

    摘要: The abundance of broad-leaved weeds in peanut fields represents the handicap in weed management programs, since limited specific herbicides can be recommended to control them. Moreover, the physio-biochemical constituents and nutritional status in peanut plants as affected by available herbicides, i.e., bentazone under water stress conditions are not well known. Therefore, field trials were conducted during the growing seasons in 2016 and 2017 to investigate the interactional impact of irrigation levels (I50, I75 and I100, representing irrigation by 50%, 75% and 100% of crop evapotranspiration, respectively) and weed control practices (bentazone, bentazone+hoeing once, hoeing twice and weedy check as control) on dominant broad-leaved weeds as well as peanut physiological and agronomic traits. Result indicated that the efficiency of weed control for each weeded treatment under I50 significantly equaled with its counterpart under I75 or I100. Bentazone+hoeing once diminished weed biomass by 89.3% and enhanced chlorophyll content of peanut plants by 51.2%. Bentazone relatively caused a reduction in carotenoides. Hoeing twice and bentazone+hoeing once under I100 in both growing seasons as well as hoeing twice under I75 in 2017 were the superior combinations for boosting pod yield of peanut plants. Treatment of bentazone+hoeing once and I75 recorded the lowest reduction in N utilization percentage and the highest increase in potassium utilization percentage of peanut plants. Eliminating weeds enhanced water use efficiency by 37.8%, 49.6% and 34.7% under I50, I75 and I100, respectively. In conclusion, peanut seems to be tolerant to bentazone at moderate water supply, thus it can be safely used in controlling the associated broad-leaved weeds.

  • Root hairs shape microbime structure and network interactions upon drought stress

    分类: 生物学 >> 植物学 分类: 生物学 >> 微生物学 提交时间: 2023-11-17

    摘要: Drought is one of the most serious abiotic stresses which also shifts the composition of root associated microbiomes. However, there is a lack of genetic evidence regarding whether and how plant genetic effects positively reshape drought induced microbiome changes. Root hairs play essential roles in water uptaking, but whether root hairs also orchestrate microbiome re-shaping process during drought stress is unknown. By utilizing genetic mutants with enhanced or decreased root hair densities, we detected a significant effect of plant genetic effect on drought induced microbiome changes. In addition, the hairy mutant (gl2) triggers a deterministic process during drought induced microbiome re-assembly, which further confirms the involvement of host effects in re-shaping drought induced microbiome changes. Rhizobiaceae strains were detected as key biomarker species positively correlated with root hair densities. Moreover, the gl2 mutant also shapes more complex microbiome co-occurrence networks, with more Rhizobiaceae hubs. Our findings unveil the novel roles of root hairs in shaping microbiome structure and network interactions upon drought stress, particularly through regulating the abundance and network centrality of Rhizobiaceae strains. Root hair related mutants also broadly affect root metabolome upon drought stress. Understanding the physiological and microbial ecological basis of host mediated microbiome re-shaping under drought helps develop microbiome engineering approaches to combat climate changes.

  • Effects of water stress and NaCl stress on different life cycle stages of the cold desert annual Lachnoloma lehmannii in China

    分类: 环境科学技术及资源科学技术 >> 环境科学技术基础学科 提交时间: 2019-10-26 合作期刊: 《干旱区科学》

    摘要: For a plant species to complete its life cycle in arid and saline environments, each stage of the life cycle must be tolerant to the harsh environmental conditions. The aim of the study was to determine the effects of water stress (water potentials of –0.05, –0.16, –0.33, –0.56, –0.85 and –1.21 MPa) and NaCl stress (50, 100, 200, 300, 400, 500 and 600 mmol/L NaCl) on seed germination percentage, seedling survival and growth, juvenile growth and plant reproduction of Lachnoloma lehmannii Bunge (Brassicaceae), an cold desert annual that grows in the Junggar Basin of Xinjiang, China in 2010. Results indicated that low water stress (–0.05 and –0.16 MPa) had no significant effect on seed germination percentage. With a decrease in water potential, germination percentage decreased, and no seeds germinated at –0.85 and –1.21 MPa water stresses. Germination percentage of seeds was significantly affected by NaCl stress, and higher germination percentages were observed under non-saline than saline conditions. An increase in NaCl concentrations progressively inhibited seed germination percentage, and no seeds germinated at ≥400 mmol/L NaCl concentration. Non-germinated seeds were transferred from both PEG (polyethylene glycol-6000) and NaCl solutions to distilled water for seed germination recovery. The number of surviving seedlings and their heights and root lengths significantly decreased as NaCl stress increased. About 30% of the plants survived and produced fruits/seeds at 200 mmol/L NaCl concentration. Thus, seed germination, seedling establishment and reproductive stage in the life cycle of L. lehmannii are water- and salt-tolerant, with seedlings being the least tolerant. These tolerances help explain why this species can survive and produce seeds in arid and saline habitats.