• Soil quality assessment in different dammed-valley farmlands in the hilly-gully mountain areas of the northern Loess Plateau, China

    分类: 地球科学 >> 地理学 提交时间: 2021-09-08 合作期刊: 《干旱区科学》

    摘要: There are numerous valley farmlands on the Chinese Loess Plateau (CLP), where suffers from low soil quality and high risk of soil salinization due to the shallow groundwater table and poor drainage system. Currently, research on the evolution processes and mechanisms of soil quality and salinization in these dammed-valley farmlands on the CLP is still inadequately understood. In this study, three kinds of dammed-valley farmlands in the hilly-gully areas of the northern CLP were selected, and the status of soil quality and the impact factors of soil salinization were examined. The dammed-valley farmlands include the new farmland created by the project of Gully Land Consolidation, the 60-a farmland created by sedimentation from check dam, and the 400-a farmland created by sedimentation from an ancient landslide-dammed lake. Results showed that (1) the newly created farmland had the lowest soil quality in terms of soil bulk density, porosity, soil organic carbon and total nitrogen among the three kinds of dammed-valley farmlands; (2) soil salinization occurred in the middle and upper reaches of the new and 60-a valley farmlands, whereas no soil salinization was found in the 400-a valley farmland; and (3) soil salinization and low soil nutrient were determined to be the two important factors that impacted the soil quality of the valley farmlands in the hilly-gully mountain areas of the CLP. We conclude that the dammed-valley farmlands on the CLP have a high risk of soil salinization due to the shallow groundwater table, alkalinity of the loessial soil and local landform feature, thus resulting in the low soil quality of the valley farmlands. Therefore, strengthening drainage and decreasing groundwater table are extremely important to improve the soil quality of the valley farmlands and guarantee the sustainable development of the valley agriculture on the CLP.

  • Isotope implications of groundwater recharge, residence time and hydrogeochemical evolution of the Longdong Loess Basin, Northwest China

    分类: 地球科学 >> 地理学 提交时间: 2022-01-30 合作期刊: 《干旱区科学》

    摘要: Groundwater plays a dominant role in the eco-environmental protection of arid and semi-arid regions. Understanding the sources and mechanisms of groundwater recharge, the interactions between groundwater and surface water and the hydrogeochemical evolution and transport processes of groundwater in the Longdong Loess Basin, Northwest China, is of importance for water resources management in this ecologically sensitive area. In this study, 71 groundwater samples (mainly distributed at the Dongzhi Tableland and along the Malian River) and 8 surface water samples from the Malian River were collected, and analysis of the aquifer system and hydrological conditions, together with hydrogeochemical and isotopic techniques were used to investigate groundwater sources, residence time and their associated recharge processes. Results show that the middle and lower reaches of the Malian River receive water mainly from groundwater discharge on both sides of valley, while the source of the Malian River mainly comes from local precipitation. Groundwater of the Dongzhi Tableland is of a HCO3CaNa type with low salinity. The reverse hydrogeochemical simulation suggests that the dissolution of carbonate minerals and cation exchange between Ca2+, Mg2+ and Na+ are the main water-rock interactions in the groundwater system of the Dongzhi Tableland. The 18O (from 11.70 to 8.52) and 2H (from 86.15 to 65.75) values of groundwater are lower than the annual weighted average value of precipitation but closer to summer-autumn precipitation and soil water in the unsaturated zone, suggesting that possible recharge comes from the summer-autumn monsoonal heavy precipitation in the recent past (220 a). The corrected 14C ages of groundwater range from 3,000 to 25,000 a old, indicating that groundwater was mainly from precipitation during the humid and cold Late Pleistocene and Holocene periods. Groundwater flows deeper from the groundwater table and from the center to the east, south and west of the Dongzhi Tableland with estimated migration rate of 1.291.43 m/a. The oldest groundwater in the Quaternary Loess Aquifer in the Dongzhi Tableland is approximately 32,000 a old with poor renewability. Based on the 18O temperature indicator of groundwater, we speculate that temperature of the Last Glacial Maximum in the Longdong Loess Basin was 2.4C6.0C colder than the present. The results could provide us the valuable information on groundwater recharge and evolution under thick loess layer, which would be significative for the scientific water resources management in semi-arid regions.

  • High-frequency climatic fluctuations over the past 30 ka in northwestern margin of the East Asian monsoon region, China

    分类: 地球科学 >> 大气科学 提交时间: 2022-12-12 合作期刊: 《干旱区科学》

    摘要:Whether millennial- to centennial-scale climate variations throughout the Holocene convey universal climate change is still widely debated. In this study, we aimed to obtain a set of high-resolution multi-proxy data (1343 particle size samples, 893 total organic carbon samples, and 711 pollen samples) from an alluvial-lacustrine-aeolian sequence based on an improved age-depth model in the northwestern margin of the East Asian monsoon region to explore the dynamics of climate changes over the past 30 ka. Results revealed that the sequence not only documented the major climate events that corresponded well with those reported from the North Atlantic regions but also revealed many marked and high-frequency oscillations at the millennial- and centennial-scale. Specifically, the late stage of the last glacial lasting from 30.1 to 18.1 cal. ka BP was a dry and cold period. The deglacial (18.1–11.5 cal. ka BP) was a wetting (probably also warming) period, and three cold and dry excursions were found in the wetting trend, i.e., the Oldest Dryas (18.1–15.8 cal. ka BP), the Older Dryas (14.6–13.7 cal. ka BP), and the Younger Dryas (12.5–11.5 cal. ka BP). The Holocene can be divided into three portions: the warmest and wettest early portion from 11.5 to 6.7 cal. ka BP, the dramatically cold and dry middle portion from 6.7 to 3.0 cal. ka BP, and the coldest and driest late portion since 3.0 cal. ka BP. Wavelet analysis results on the total pollen concentration revealed five substantially periodicities: c. 5500, 2200, 900, 380, and 210 a. With the exception of the c. 5500 a quasi-cycle that was causally associated with the Atlantic meridional overturning circulation, the other four quasi-cycles (i.e., c. 2200, 900, 380, and 210 a) were found to be indirectly causally associated with solar activities. This study provides considerable insight into the dynamic mechanism of the Asian climate on a long-time scale and future climatic change.

  • Multi-scale spatial relationships between soil total nitrogen and influencing factors in a basin landscape based on multivariate empirical mode decomposition

    分类: 农、林、牧、渔 >> 土壤学 提交时间: 2019-06-20 合作期刊: 《干旱区科学》

    摘要: The relationships between soil total nitrogen (STN) and influencing factors are scale-dependent. The objective of this study was to identify the multi-scale spatial relationships of STN with selected environmental factors (elevation, slope and topographic wetness index), intrinsic soil factors (soil bulk density, sand content, silt content, and clay content) and combined environmental factors (including the first two principal components (PC1 and PC2) of the Vis-NIR soil spectra) along three sampling transects located at the upstream, midstream and downstream of Taiyuan Basin on the Chinese Loess Plateau. We separated the multivariate data series of STN and influencing factors at each transect into six intrinsic mode functions (IMFs) and one residue by multivariate empirical mode decomposition (MEMD). Meanwhile, we obtained the predicted equations of STN based on MEMD by stepwise multiple linear regression (SMLR). The results indicated that the dominant scales of explained variance in STN were at scale 995 m for transect 1, at scales 956 and 8852 m for transect 2, and at scales 972, 5716 and 12,317 m for transect 3. Multi-scale correlation coefficients between STN and influencing factors were less significant in transect 3 than in transects 1 and 2. The goodness of fit root mean square error (RMSE), normalized root mean square error (NRMSE), and coefficient of determination (R2) indicated that the prediction of STN at the sampling scale by summing all of the predicted IMFs and residue was more accurate than that by SMLR directly. Therefore, the multi-scale method of MEMD has a good potential in characterizing the multi-scale spatial relationships between STN and influencing factors at the basin landscape scale.

  • Formation mechanisms and remediation techniques for low-efficiency artificial shelter forests on the Chinese Loess Plateau

    分类: 地球科学 >> 地理学 提交时间: 2022-10-13 合作期刊: 《干旱区科学》

    摘要:The construction of artificial shelter forests (ASFs) has resulted in substantial ecological, economic, and societal benefits to the Chinese Loess Plateau (CLP). However, the health and benefits of ASFs are being increasingly threatened by the formation of low-efficiency artificial shelter forests (LEASFs). In this study, LEASFs are systematically analyzed in terms of their status, formation mechanisms, and developmental obstacles. The key restoration techniques and schemes were summarized to improve the quality and efficiency of LEASFs. LEASFs are formed by relatively complex mechanisms, but they arise mainly due to poor habitat conditions, improper tree species selections, mismatch between stands and habitat, extensive forest management measures, and human interferences. The restoration and improvement of LEASFs are hindered by water deficits, mismatch between stands and habitat, single management purpose, and low efficiency. LEASFs are becoming more complex due to their wide range, the challenges associated with their restoration, and insufficient technological measures for their restoration. The key techniques of the quality and efficiency improvement of LEASFs include basic forest tending methods, near-natural restoration, multifunction-oriented improvement, and systematic restoration. An understanding on the formation mechanisms of LEASFs and a scientific approach toward their restoration are urgently needed and critical for the ecological protection and high-quality development of LEASFs on the CLP. Based on these analyses, we recommend strengthening the monitoring and supervision of LEASFs, considering the bearing capacity of regional water resources, implementing multiple restoration techniques, promoting multifunction-oriented ecological development, and exploring new management concepts to achieve the sustainable development of ASFs on the CLP.