• Ultralow complexity long short-term memory network for fiber nonlinearity mitigation in coherent optical communication systems

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Fiber Kerr nonlinearity is a fundamental limitation to the achievable capacity of long-distance optical fiber communication. Digital back-propagation (DBP) is a primary methodology to mitigate both linear and nonlinear impairments by solving the inverse-propagating nonlinear Schr\"odinger equation (NLSE), which requires detailed link information. Recently, the paradigms based on neural network (NN) were proposed to mitigate nonlinear transmission impairments in optical communication systems. However, almost all neural network-based equalization schemes yield high computation complexity, which prevents the practical implementation in commercial transmission systems. In this paper, we propose a center-oriented long short-term memory network (Co-LSTM) incorporating a simplified mode with a recycling mechanism in the equalization operation, which can mitigate fiber nonlinearity in coherent optical communication systems with ultralow complexity. To validate the proposed methodology, we carry out an experiment of ten-channel wavelength division multiplexing (WDM) transmission with 64 Gbaud polarization-division-multiplexed 16-ary quadrature amplitude modulation (16-QAM) signals. Co-LSTM and DBP achieve a comparable performance of nonlinear mitigation. However, the complexity of Co-LSTM with a simplified mode is almost independent of the transmission distance, which is much lower than that of the DBP. The proposed Co-LSTM methodology presents an attractive approach for low complexity nonlinearity mitigation with neural networks.

  • Chinese Color Nest Project (CCNP)i: Growing Up in China

    分类: 心理学 >> 实验心理学 提交时间: 2017-10-13

    摘要: Abstract: To face the challenges of keeping healthy in increasing population sizes of both ageing and developing people in China, a fundamental request from the public health is the development of lifespan normative trajectories of brain and behavior. This paper introduces the Chinese Color Nest Project (CCNP 2013–2022), a large-scale tenyear program of modeling brain and behavioral trajectories for human lifespan (6–85 years old). We plan to gradually collect the behavioral and brain imaging data at ages across the lifespan on nationwide and depict the normal trajectory of Chinese brain development across the lifespan, based on the accelerated longitudinal design in the coming next 10 years starting at 2013. Various psychiatric disorders have been demonstrated highly relevant to abnormal events during the neurodevelopment regarding their onset ages of first episodes. Therefore, delineation of normative growth curves of brain and cognition in typically developing children is extremely useful for monitoring, early detecting and intervention of various neurodevelopmental disorders. In this paper, we detailed the developing part of CCNP, devCCNP. It tracked 192 healthy children and adolescents (6–18 years old) in Beibei district of Chongqing for the first 5 years of the full CCNP cohort (2013–2017). To demonstrate the feasibility of implementing the longterm follow-up of CCNP, we here comprehensively document devCCNP in terms of its experimental design, sample strategies, data acquisition and storage as well as some preliminary results and data sharing roadmap for future. Specifically, we first describe the accelerated longitudinal sampling design as well as its exact ratio of sample dropping off during the data collection. Second, we present several initial findings such as canonical growth curves of cortical surface areas of a set of well-established large-scale functional networks of the human brain. Finally, together with records generated by many psychological and behavioral tests, we will provide an individual growing-up report for each family participating the program, initiating the potential guidance on the individual academic and social development. The resources introduced in the current work can provide first-hand data for a series of coming Chinese brain development studies, such as Chinese Standard MRI Brain Templates, Normative Growth Curves of Chinese Brain and Cognition as well as Mapping of Language Areas in Chinese Developing Brain. These would not only offer normative references of the atypical brain and cognition development for Chinese population but also serve as a strong force on accelerating the pace of integrating Chinese brain development into the national brain program or Chinese Brain Project.