您当前的位置: > 详细浏览

Characterization of alpine meadow surface crack and its correlation with root-soil properties 后印本

请选择邀稿期刊:
摘要: Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development. Crack characterization indices are crucial for the quantitative characterization of complex cracks, serving as vital factors in assessing the degree of cracking and the development morphology. So far, research on evaluating the degree of grassland degradation through crack characterization indices is rare, especially the quantitative analysis of the development of surface cracks in alpine meadows is relatively scarce. Therefore, based on the phenomenon of surface cracking during the degradation of alpine meadows in some regions of the Qinghai-Tibet Plateau, we selected the alpine meadow in the Huangcheng Mongolian Township, Menyuan Hui Autonomous County, Qinghai Province, China as the study area, used unmanned aerial vehicle (UAV) sensing technology to acquire low-altitude images of alpine meadow surface cracks at different degrees of degradation (light, medium, and heavy degradation), and analyzed the representative metrics characterizing the degree of crack development by interpreting the crack length, length density, branch angle, and burrow (rat hole) distribution density and combining them with in situ crack width and depth measurements. Finally, the correlations between the crack characterization indices and the soil and root parameters of sample plots at different degrees of degradation in the study area were analyzed using the grey relation analysis. The results revealed that with the increase of degradation, the physical and chemical properties of soil and the mechanical properties of root-soil composite changed significantly, the vegetation coverage reduced, and the root system aggregated in the surface layer of alpine meadow. As the degree of degradation increased, the fracture morphology developed from "linear" to "dendritic", and eventually to a complex and irregular "polygonal" pattern. The crack length, width, depth, and length density were identified as the crack characterization indices via analysis of variance. The results of grey relation analysis also revealed that the crack length, width, depth, and length density were all highly correlated with root length density, and as the degradation of alpine meadows intensified, the underground biomass increased dramatically, forming a dense layer of grass felt, which has a significant impact on the formation and expansion of cracks.

版本历史

[V1] 2024-06-21 11:12:53 ChinaXiv:202406.00344V1 下载全文
点击下载全文
预览
许可声明
metrics指标
  •  点击量316
  •  下载量85
评论
分享