您当前的位置: > 详细浏览

Static and dynamic evolution of CO adsorption on γ-U (1 0 0) surface with different levels of Mo doping using DFT and AIMD calculations

请选择邀稿期刊:
摘要: Alloys of uranium and molybdenum are considered as the future of nuclear fuel and defense materials. However, surface corrosion is a fundamental problem in practical applications and storage. In this study, the static and dynamic evolution of carbon monoxide (CO) adsorption and dissociation on γ-U (1 0 0) surface with different Mo doping levels was investigated based on density functional theory and ab initio molecular dynamics. During the static calculation phase, parameters, such as adsorption energy, configuration, and Bader charge, were evaluated at all adsorption sites. Furthermore, the time-dependent behavior of CO molecule adsorption were investigated at the most favorable sites. The minimum energy paths for CO molecular dissociation and atom migration were investigated using the transition state search method. The results demonstrated that the CO on the uranium surface mainly manifests as chemical adsorption before dissociation of the CO molecule. The CO molecule exhibited a tendency to rotate and tilt upright adsorption. However, it is difficult for CO adsorption on the surface in one of the configurations with CO molecule in vertical direction but oxygen (O) is closer to the surface. Bader charge illustrates that the charge transfers from slab atoms to the 2π* antibonding orbital of CO molecule and particularly occurs in carbon (C) atoms. The time is less than 100 fs for the adsorptions that forms embryos with tilt upright in dynamics evolution. The density of states elucidates that the overlapping hybridization of C and O 2p orbitals is mainly formed via the d orbitals of uranium and molybdenum (Mo) atoms in the dissociation and re-adsorption of CO molecule. In conclusion, Mo-doping of the surface can decelerate the adsorption and dissociation of CO molecules. A Mo-doped surface, created through ion injection, enhanced the resistance to uranium-induced surface corrosion.

版本历史

[V1] 2023-08-14 13:23:18 ChinaXiv:202308.00194V1 下载全文
点击下载全文
预览
同行评议状态
待评议
许可声明
metrics指标
  •  点击量1808
  •  下载量195
评论
分享
申请专家评阅