您当前的位置: > 详细浏览

Seasonal variations in glacier velocity in the High Mountain Asia region during 2015–2020

请选择邀稿期刊:
Abstract: Velocity is an important component of glacier dynamics and directly reflects the response of glaciers to climate change. As a result, an accurate determination of seasonal variation in glacier velocity is very important in understanding the annual variation in glacier dynamics. However, few studies of glacier velocity in the High Mountain Asia (HMA) region were done. Along these lines, in this work, based on Sentinel-1 glacier velocity data, the distribution of glacier velocity in the HMA region was plotted and their seasonal variations during 2015–2020 were systematically analysed. The average glacier velocity in the HMA region was 0.053 m/d, and was positively correlated with the glacier area and slope. Glaciers in the Karakoram Mountains had the fastest average flow velocity (0.060 m/d), where the glaciers exhibited the largest average area and average slope. Moreover, glaciers in the Gangdisê Mountains had the slowest velocity (0.022 m/d) and the smallest average glacier area. The glacier flows were the fastest in spring (0.058 m/d), followed by summer (0.050 m/d), autumn (0.041 m/d), and winter (0.040 m/d). In addition, the glacier flows were the maximum in May, being 1.4 times of the annual average velocity. In some areas, such as the Qilian, Altun, Tibetan Interior, Eastern Kunlun, and Western Kunlun mountains, the peak glacier velocities appeared in June and July. The glacier velocity in the HMA region decreased in midsummer and reached the minimum in December when it was 75% of the annual average. These results highlight the role of meltwater in the seasonal variation in glacier flows in late spring and early summer. The seasonal velocity variation of lake-terminating glaciers was similar to that of land-terminating ones, but the former flowed faster. The velocity difference close to the mass balance line between the lake- and land-terminating glaciers was obviously greater in spring than in other seasons. In summer, the difference between the lake- and land-terminating glaciers at a normalized distance of 0.05–0.40 from the terminus was significantly greater than those of other seasons. The velocity difference between the lake- and land-terminating glaciers is closely related to the variable of ice thickness, and also to the frictional force of the terminal base reduced by proglacial lakes. Thus, it can be concluded that in addition to the variation of the glacier thickness and viscosity, the variation of glacier water input also plays a key role in the seasonal variation of glacier velocity.
 

版本历史

[V1] 2023-06-13 18:13:32 ChinaXiv:202306.00155V1 下载全文
点击下载全文
预览
许可声明
metrics指标
  •  点击量1907
  •  下载量229
评论
分享