您选择的条件: Jingwei Zhou
  • Self-aligned patterning technique for fabricating high-performance diamond sensor arrays with nanoscale precision

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: To efficiently align the creation of defect center with photonics structure in nanoscale precision is one of the outstanding challenges for realizing high-performance photonic devices and the application in quantum technology such as quantum sensing, scalable quantum systems, and quantum computing network. Here, we propose a facile self-aligned patterning technique wholly based on conventional engineering technology, with the doping precision can reach ~15nm. Specifically, we demonstrate this technique by fabricating diamond nanopillar sensor arrays, which show high consistency and near-optimal photon counts, high yield approaching the theoretical limit, and high filtering efficiency for different NV centers. Combined with appropriate crystal orientation, a saturated fluorescence rate of 4.65 Mcps and the best reported fluorescence-dependent detection sensitivity of 1900 cps^(-1/2) are achieved. This technique applicable to all similar solid-state systems should facilitate the development of parallel quantum sensing and scalable information processing.

  • Parity-dependent unidirectional and chiral photon transfer in reversed-dissipation cavity optomechanics

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Nonreciprocal elements, such as isolators and circulators, play an important role in classical and quantum information processing. Recently, strong nonreciprocal effects have been experimentally demonstrated in cavity optomechanical systems. In these approaches, the bandwidth of the nonreciprocal photon transmission is limited by the mechanical resonator linewidth, which is arguably much smaller than the linewidths of the cavity modes in most electromechanical or optomechanical devices. In this work, we demonstrate broadband nonreciprocal photon transmission in the \emph{reversed-dissipation} regime, where the mechanical mode with a large decay rate can be adiabatically eliminated while mediating anti-$\mathcal{PT}$-symmetric dissipative coupling with two kinds of phase factors. Adjusting the relative phases allows the observation of \emph{periodic} Riemann-sheet structures with distributed exceptional points (Eps). At the Eps, destructive quantum interference breaks both the $\mathcal{T}$- and $\mathcal{P}$-inversion symmetry, resulting in unidirectional and chiral photon transmissions. In the reversed-dissipation regime, the nonreciprocal bandwidth is no longer limited by the mechanical mode linewidth but is improved to the linewidth of the cavity resonance. Furthermore, we find that the direction of the unidirectional and chiral energy transfer could be reversed by changing the \emph{parity} of the Eps. Extending non-Hermitian couplings to a three-cavity model, the broken anti-$\mathcal{PT}$-symmetry allows us to observe high-order Eps, at which a parity-dependent chiral circulator is demonstrated. The driving-phase controlled periodical Riemann sheets allow observation of the parity-dependent unidirectional and chiral energy transfer and thus provide a useful cell for building up nonreciprocal array and realizing topological, e.g., isolators, circulators, or amplifiers.