您选择的条件: Jian-Hua Jiang
  • Observation of fractional topological numbers at photonic edges and corners

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Topological phases of matter are featured with exotic edge states. However, the fractional topological numbers at edges, though predicted long ago by Jackiw and Rebbi, remain elusive in topological photonic systems. Here, we report on the observation of fractional topological numbers at the topological edges and corners in one- and two-dimensional photonic crystals. The fractional topological numbers are determined via the measurements of the photonic local density-of-states. In one-dimensional photonic crystals, we witness a rapid change of the fractional topological number at the edges rising from 0 to 1/2 when the photonic band gap experiences a topological transition, confirming the well-known prediction of Jackiw and Rebbi. In two-dimensional systems, we discover that the fractional topological number in the corner region varies from 0 to 1/2 and 1/4 in different photonic band gap phases. Our study paves the way toward topological manipulation of fractional quantum numbers in photonics.

  • Ideal type-II Weyl points in twisted one-dimensional dielectric photonic crystals

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Weyl points are the degenerate points in three-dimensional momentum space with nontrivial topological phase, which are usually realized in classical system with structure and symmetry designs. Here we proposed a one-dimensional layer-stacked photonic crystal using anisotropic materials to realize ideal type-II Weyl points without structure designs. The topological transition from two Dirac points to four Weyl points can be clearly observed by tuning the twist angle between layers. Besides, on the interface between the photonic type-II Weyl material and air, gappless surface states have also been demonstrated in an incomplete bulk bandgap. By breaking parameter symmetry, these ideal type-II Weyl points at the same frequency would transform into the non-ideal ones, and exhibit topological surface states with single group velocity. Our work may provide a new idea for the realization of photonic Weyl points or other semimetal phases by utilizing naturally anisotropic materials.

  • Topological Wannier cycles for the bulk and edges

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Topological materials are often characterized by unique edge states which are in turn used to detect different topological phases in experiments. Recently, with the discovery of various higher-order topological insulators, such spectral topological characteristics are extended from edge states to corner states. However, the chiral symmetry protecting the corner states is often broken in genuine materials, leading to vulnerable corner states even when the higher-order topological numbers remain quantized and invariant. Here, we show that a local artificial gauge flux can serve as a robust probe of the Wannier type higher-order topological insulators which is effective even when the chiral symmetry is broken. The resultant observable signature is the emergence of the cyclic spectral flows traversing one or multiple band gaps. These spectral flows are associated with the local modes bound to the artificial gauge flux. This phenomenon is essentially due to the cyclic transformation of the Wannier orbitals when the local gauge flux acts on them. We extend topological Wannier cycles to systems with C2 and C3 symmetries and show that they can probe both the bulk and the edge Wannier centers, yielding rich topological phenomena.

  • Topological phenomena at topological defects

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: There are two prominent applications of the mathematical concept of topology to the physics of materials: band topology, which classifies different topological insulators and semimetals, and topological defects that represent immutable deviations of a solid lattice from its ideal crystalline form. While these two classes of topological phenomena have generally been treated as separate topics, recent experimental advancements have begun to probe their intricate and surprising interactions, in real materials as well as synthetic metamaterials. Topological lattice defects in topological materials offer a platform to explore a diverse range of novel phenomena, such as topological pumping via topological defects, embedded topological phases, synthetic dimensions, and non-Hermitian skin effects. In this Perspective, we survey the developments in this rapidly moving field, and give an outlook of its impact on materials science and applications.

  • Possible Realization of Optical Quadratic and Dirac Points in Woodpile Photonic Crystals

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The simulation of fermionic relativistic physics, e.g., Dirac and Weyl physics, has led to the discovery of many unprecedented phenomena in photonics, of which the optical-frequency realization is, however, still challenging. Here, surprisingly, we discover that the woodpile photonic crystals commonly used for optical frequency applications host exotic fermion-like relativistic degeneracies: a Dirac nodal line and a fourfold quadratic point, as protected by the nonsymmorphic crystalline symmetry. Deforming the woodpile photonic crystal leads to the emergence of type-II Dirac points from the fourfold quadratic point. Such type-II Dirac points can be detected by its anomalous refraction property which is manifested as a giant birefringence in a slab setup. Our findings provide a promising route towards 3D optical Dirac physics in all-dielectric photonic crystals.

  • Tuning Topological Transitions in Twisted Thermophotovoltaic Systems

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Twisted bilayer two-dimensional electronic systems give rise to many exotic phenomena and unveil a new frontier for the study of quantum materials. In photonics, twisted two-dimensional systems coupled via near-field interactions offer a platform to study localization and lasing. Here, we propose that twisting can be an unprecedented tool to tune the performance of near-field thermophotovoltaic systems. Remarkably, through twisting-induced photonic topological transitions, we achieve significant tuning of the thermophotovoltaic energy efficiency and power. The underlying mechanism is related to the change of the photonic iso-frequency contours from elliptical to hyperbolic geometries in a setup where the hexagonal-boron-nitride metasurface serves as the heat source and the indium antimonide $p$-$n$ junction serves as the cell. We find a notably high energy efficiency, nearly 53\% of the Carnot efficiency, can be achieved in our thermophotovoltaic system, while the output power can reach to $1.1\times10^4$~W/m$^2$ without requiring a large temperature difference between the source and the cell. Our results indicate the promising future of twisted near-field thermophotovoltaics and paves the way towards tunable, high-performance thermophotovoltaics and infrared detection.