您选择的条件: Xiaoting Fu
  • Stellar Initial Mass Function Varies with Metallicities and Time

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Most structural and evolutionary properties of galaxies strongly rely on the stellar initial mass function (IMF), namely the distribution of the stellar mass formed in each episode of star formation. As the IMF shapes the stellar population in all stellar systems, it turns out to become one of the most fundamental concepts of modern astronomy. Both constant and variable IMFs across different environments have been claimed despite a large number of theoretical and observational efforts. However, the measurement of the IMF in Galactic stellar populations has been limited by the relatively small number of photometrically observed stars, leading to high uncertainties. Here we report a star-counting result based on ~93,000 spectroscopically observed M-dwarf stars, an order of magnitude more than previous studies, in the 100--300 parsec (pc) Solar neighbourhood. We find unambiguous evidence of a variable IMF that depends on both metallicity and stellar age. Specifically, the stellar population formed at the early time contains fewer low-mass stars compared to the canonical IMF, independent of stellar metallicities. In present days, on the other hand, the proportion of low-mass stars increases with stellar metallicity. The variable abundance of low-mass stars in our Milky Way establishes a powerful benchmark for models of star formation and can heavily impact results in Galactic chemical enrichment modelling, mass estimation of galaxies, and planet formation efficiency.

  • Stellar Initial Mass Function Varies with Metallicities and Time

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Most structural and evolutionary properties of galaxies strongly rely on the stellar initial mass function (IMF), namely the distribution of the stellar mass formed in each episode of star formation. As the IMF shapes the stellar population in all stellar systems, it turns out to become one of the most fundamental concepts of modern astronomy. Both constant and variable IMFs across different environments have been claimed despite a large number of theoretical and observational efforts. However, the measurement of the IMF in Galactic stellar populations has been limited by the relatively small number of photometrically observed stars, leading to high uncertainties. Here we report a star-counting result based on ~93,000 spectroscopically observed M-dwarf stars, an order of magnitude more than previous studies, in the 100--300 parsec (pc) Solar neighbourhood. We find unambiguous evidence of a variable IMF that depends on both metallicity and stellar age. Specifically, the stellar population formed at the early time contains fewer low-mass stars compared to the canonical IMF, independent of stellar metallicities. In present days, on the other hand, the proportion of low-mass stars increases with stellar metallicity. The variable abundance of low-mass stars in our Milky Way establishes a powerful benchmark for models of star formation and can heavily impact results in Galactic chemical enrichment modelling, mass estimation of galaxies, and planet formation efficiency.

  • LAMOST meets Gaia: The Galactic Open Clusters

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Open Clusters are born and evolve along the Milky Way plane, on them is imprinted the history of the Galactic disc, including the chemical and dynamical evolution. Chemical and dynamical properties of open clusters can be derived from photometric, spectroscopic, and astrometric data of their member stars. Based on the photometric and astrometric data from the Gaia mission, the membership of stars in more than 2000 Galactic clusters has been identified in the literature. The chemical and kinematical properties, however, are still poorly known for many of these clusters. In synergy with the large spectroscopic survey LAMOST (data release 8) and Gaia (data release 2), we report a new comprehensive catalogue of 386 open clusters. This catalogue has homogeneous parameter determinations of radial velocity, metallicity, and dynamical properties, such as orbit, eccentricity, angular momenta, total energy, and 3D Galactic velocity. These parameters allow the first radial velocity determination and the first spectroscopic [Fe/H] determination for 44 and 137 clusters, respectively. The metallicity distribution of majority clusters shows falling trends in the parameter space of the Galactocentric radius, the total energy, and the Z component of angular momentum -- except for two old groups that show flat tails in their own parameter planes. Cluster populations of ages younger and older than 500 Myrs distribute diversely on the disc. The latter has a spatial consistency with the Galactic disc flare. The 3-D spatial comparison between very young clusters (< 100 Myr) and nearby molecular clouds revealed a wide range of metallicity distribution along the Radcliffe gas cloud wave, indicating a possible inhomogeneous mixing or fast star formation along the wave. This catalogue would serve the community as a useful tool to trace the chemical and dynamical evolution of the Milky Way.