您选择的条件: Robert J. J. Grand
  • The impact of filaments on dwarf galaxy properties in the Auriga simulations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: With a hydrodynamical simulation using a simple galaxy formation model without taking into account feedback, our previous work has shown that dense and massive filaments at high redshift can provide potential wells to trap and compress gas, and hence affect galaxy formation in their resident low-mass haloes. In this paper, we make use of the Auriga simulations, a suite of high-resolution zoom-in hydrodynamical simulations of Milky Way-like galaxies, to study whether the conclusion still holds in the simulations with a sophisticated galaxy formation model. In agreement with the results of our previous work, we find that, comparing to their counterparts with similar halo masses in field, dwarf galaxies residing in filaments tend to have higher baryonic and stellar fractions. At the fixed parent halo mass, the filament dwarfs tend to have slightly higher star formation rates than those of field ones. But overall we do not find a clear difference in galaxy g - r colours between the filament and field populations. We also show that at high redshifts, the gas components in dwarf galaxies tend to have their spins aligned with the filaments in which they reside. Our results support a picture in which massive filaments at high redshift assist gas accretion and enhance star formation in their resident dwarf sized dark matter haloes.

  • Colour and infall time distributions of satellite galaxies in simulated Milky-Way analogs

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We use the Auriga simulations to probe different satellite quenching mechanisms operating at different mass scales ($10^5 M_\odot \lesssim M_\star \lesssim 10^{11} M_\odot$) in Milky Way-like hosts. Our goal is to understand the origin of the satellite colour distribution and star-forming properties in both observations and simulations. We find that the satellite populations in the Auriga simulations, which was originally designed to model Milky Way-like host galaxies, resemble the populations in the Exploration of Local VolumE Satellites (ELVES) Survey and the Satellites Around Galactic Analogs (SAGA) survey in their luminosity function in the luminosity range $-12 \lesssim M_V \lesssim -15$ and resemble ELVES in their quenched fraction and colour--magnitude distribution in the luminosity range $-12 \lesssim M_g \lesssim -15$. We find that satellites transition from blue colours to red colours at the luminosity range $-15 \lesssim M_g \lesssim -12$ in both the simulations and observations and we show that this shift is driven by environmental effects in the simulations. We demonstrate also that the colour distribution in both simulations and observations can be decomposed into two statistically distinct populations based on their morphological type or star-forming status that are statistically distinct. In the simulations, these two populations also have statistically distinct infall time distributions. The comparison presented here seems to indicate that the tension between the quenched fraction in SAGA and simulations is resolved by the improved target selection of ELVES, but there are still tensions in understanding the colours of faint galaxies, of which ELVES appears to have a significant population of faint blue satellites not recovered in Auriga.

  • Is the core-cusp problem a matter of perspective: Jeans Anisotropic Modeling against numerical simulations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Mock member stars for 28 dwarf galaxies are constructed from the cosmological Auriga simulation, which reflect the dynamical status of realistic stellar tracers. The axis-symmetric Jeans Anisotropic Multi-Gaussian Expansion (JAM) modeling is applied to 6,000 star particles for each system, to recover the underlying matter distribution. The stellar or dark matter component individually is poorly recovered, but the total profile is constrained more reasonably. The mass within the half-mass radius of tracers is recovered the tightest, and the mass between 200 and 300 pc, $M(200-300\mathrm{pc})$, is constrained ensemble unbiasedly, with a scatter of 0.167 dex. If using 2,000 particles and only line-of-sight velocities with typical errors, the scatter in $M(200-300\mathrm{pc})$ is increased by $\sim$50%. Quiescent Sagittarius dSph-like systems and star-forming systems with strong outflows show distinct features, with $M(200-300\mathrm{pc})$ mostly under-estimated for the former, and likely over-estimated for the latter. The biases correlate with the dynamical status, which is a result of contraction motions due to tidal effects in quiescent systems or galactic winds in star-forming systems, driving them out of equilibrium. After including Gaia DR3 proper motion errors, we find proper motions can be as useful as line-of-sight velocities for nearby systems at $<\sim$60 kpc. By extrapolating the actual density profiles and the dynamical constraints down to scales below the resolution, we find the mass within 150 pc can be constrained ensemble unbiasedly, with a scatter of $\sim$0.255 dex. In the end, we show that the contraction of member stars in nearby systems is detectable based on Gaia DR3 proper motion errors.

  • Is the core-cusp problem a matter of perspective: Jeans Anisotropic Modeling against numerical simulations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Mock member stars for 28 dwarf galaxies are constructed from the cosmological Auriga simulation, which reflect the dynamical status of realistic stellar tracers. The axis-symmetric Jeans Anisotropic Multi-Gaussian Expansion (JAM) modeling is applied to 6,000 star particles for each system, to recover the underlying matter distribution. The stellar or dark matter component individually is poorly recovered, but the total profile is constrained more reasonably. The mass within the half-mass radius of tracers is recovered the tightest, and the mass between 200 and 300 pc, $M(200-300\mathrm{pc})$, is constrained ensemble unbiasedly, with a scatter of 0.167 dex. If using 2,000 particles and only line-of-sight velocities with typical errors, the scatter in $M(200-300\mathrm{pc})$ is increased by $\sim$50%. Quiescent Sagittarius dSph-like systems and star-forming systems with strong outflows show distinct features, with $M(200-300\mathrm{pc})$ mostly under-estimated for the former, and likely over-estimated for the latter. The biases correlate with the dynamical status, which is a result of contraction motions due to tidal effects in quiescent systems or galactic winds in star-forming systems, driving them out of equilibrium. After including Gaia DR3 proper motion errors, we find proper motions can be as useful as line-of-sight velocities for nearby systems at $<\sim$60 kpc. By extrapolating the actual density profiles and the dynamical constraints down to scales below the resolution, we find the mass within 150 pc can be constrained ensemble unbiasedly, with a scatter of $\sim$0.255 dex. In the end, we show that the contraction of member stars in nearby systems is detectable based on Gaia DR3 proper motion errors.