您选择的条件: Liming Song
  • Flare Quasi-Periodic Pulsation Associated with Recurrent Jets

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Quasi-periodic pulsations (QPPs), which carry time features and plasma characteristics of flare emissions, are frequently observed in light curves of solar/stellar flares. In this paper, we investigated non-stationary QPPs associated with recurrent jets during an M1.2 flare on 2022 July 14. A quasi-period of about 45$\pm$10 s, determined by the wavelet transform technique, is simultaneously identified at wavelengths of soft/hard X-ray and microwave emissions, which are recorded by the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor, Fermi, and the Nobeyama Radio Polarimeters, respectively. A group of recurrent jets with an intermittent cadence of about 45$\pm$10 s are found in Atmospheric Imaging Assembly (AIA) image series at 304 {\AA}, but they are 180-s earlier than the flare QPP. All observational facts suggest that the flare QPP could be excited by recurrent jets, and they should be associated with nonthermal electrons that are periodically accelerated by a repeated energy release process, like repetitive magnetic reconnection. Moreover, the same quasi-period is discovered at double footpoints connected by a hot flare loop in AIA 94 {\AA}, and the phase speed is measured to 1420 km/s. Based on the differential emission measure, the average temperatures, number densities, and magnetic field strengths at the loop top and footpoint are estimated to 7.7/6.7 MK, 7.5/3.6*10^{10} cm ^{-3}, and 143/99 G, respectively. Our measurements indicate that the 45-s QPP is probably modulated by the kink-mode wave of the flare loop.

  • The removal method and generation mechanism of spikes in Insight-HXMT/HE telescope

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Spikes are some obvious sharp increases that appear on the raw light curves of High Energy X-ray telescope(HE) onboard Insight-HXMT, which could have influences on the data products like energy and power spectra. They are considered to be fake triggers generated by large signals. In this paper, we study the characteristic of the spikes and propose two methods to remove spikes from the raw data. According to the different influences on energy and power spectra, the best parameters for removing the spikes is selected and used in the Insight-HXMT data analysis software. The generation mechanism of spikes is also studied using the backup HE detectors on ground and the spikes can be reduced by the electronic design.

  • X-ray fine structure of a limb solar flare revealed by Insight-HXMT, RHESSI and Fermi

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We conduct a detailed analysis of an M1.3 limb flare occurring on 2017 July 3, which have the X-ray observations recorded by multiple hard X-ray telescopes, including Hard X-ray Modulation Telescope (Insight-HXMT), Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and The Fermi Gamma-ray Space Telescope (FERMI). Joint analysis has also used the EUV imaging data from the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamic Observatory. The hard X-ray spectral and imaging evolution suggest a lower corona source, and the non-thermal broken power law distribution has a rather low break energy $\sim$ 15 keV. The EUV imaging shows a rather stable plasma configuration before the hard X-ray peak phase, and accompanied by a filament eruption during the hard X-ray flare peak phase. Hard X-ray image reconstruction from RHESSI data only shows one foot point source. We also determined the DEM for the peak phase by SDO/AIA data. The integrated EM beyond 10 MK at foot point onset after the peak phase, while the $>$ 10 MK source around reconnection site began to fade. The evolution of EM and hard X-ray source supports lower corona plasma heating after non-thermal energy dissipation. The combination of hard X-ray spectra and images during the limb flare provides the understanding on the interchange of non-thermal and thermal energies, and relation between lower corona heating and the upper corona instability.

  • Estimate of the Background and Sensitivity of theFollow-up X-ray Telescope onboard Einstein Probe

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: As a space X-ray imaging mission dedicated to time-domain astrophysics, the Einstein Probe (EP) carries two kinds of scientific payloads, the wide-field X-ray telescope (WXT) and the follow-up X-ray telescope (FXT). FXT utilizes Wolter-I type mirrors and the pn-CCD detectors. In this work, we investigate the in-orbit background of FXT based on Geant4 simulation. The impact of various space components present in the EP orbital environment are considered, such as the cosmic photon background, cosmic ray primary and secondary particles (e.g. protons, electrons and positrons), albedo gamma rays, and the low-energy protons near the geomagnetic equator. The obtained instrumental background at 0.5-10 keV, which is mainly induced by cosmic ray protons and cosmic photon background, corresponds to a level of $\sim$3.1$\times$10$^{-2}$ counts s$^{-1}$ keV$^{-1}$ in the imaging area of the focal plane detector (FPD), i.e. 3.7$\times$10$^{-3}$ counts s$^{-1}$ keV$^{-1}$ cm$^{-2}$ after normalization. Compared with the instrumental background, the field of view (FOV) background, which is induced by cosmic photons reflected by the optical mirror, dominates below 2 keV. Based on the simulated background level within the focal spot (a 30$^{\prime\prime}$-radius circle), the sensitivity of FXT is calculated, which could theoretically achieve several $\mu$crab (in the order of 10$^{-14}$ erg cm$^{-2}$ s$^{-1}$) in 0.5-2 keV and several tens of $\mu$crab (in the order of 10$^{-13}$ erg cm$^{-2}$ s$^{-1}$) in 2-10 keV for a pointed observation with an exposure of 25 minutes. This sensitivity becomes worse by a factor of $\sim2$ if additional 10% systematic uncertainty of the background subtraction is included.

  • The performance of SiPM-based gamma-ray detector (GRD) of GECAM-C

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: As a new member of GECAM mission, the GECAM-C (also called High Energy Burst Searcher, HEBS) is a gamma-ray all-sky monitor onboard SATech-01 satellite, which was launched on July 27th, 2022 to detect gamma-ray transients from 6 keV to 6 MeV, such as Gamma-Ray Bursts (GRBs), high energy counterpart of Gravitational Waves (GWs) and Fast Radio Bursts (FRBs), and Soft Gamma-ray Repeaters (SGRs). Together with GECAM-A and GECAM-B launched in December 2020, GECAM-C will greatly improve the monitoring coverage, localization, as well as temporal and spectral measurements of gamma-ray transients. GECAM-C employs 12 SiPM-based Gamma-Ray Detectors (GRDs) to detect gamma-ray transients . In this paper, we firstly give a brief description of the design of GECAM-C GRDs, and then focus on the on-ground tests and in-flight performance of GRDs. We also did the comparison study of the SiPM in-flight performance between GECAM-C and GECAM-B. The results show GECAM-C GRD works as expected and is ready to make scientific observations.

  • A Localization Method of High Energy Transients for All-Sky Gamma-Ray Monitor

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Fast and reliable localization of high-energy transients is crucial for characterizing the burst properties and guiding the follow-up observations. Localization based on the relative counts of different detectors has been widely used for all-sky gamma-ray monitors. There are two major methods for this counts distribution localization: $\chi^{2}$ minimization method and the Bayesian method. Here we propose a modified Bayesian method that could take advantage of both the accuracy of the Bayesian method and the simplicity of the $\chi^{2}$ method. With comprehensive simulations, we find that our Bayesian method with Poisson likelihood is generally more applicable for various bursts than $\chi^{2}$ method, especially for weak bursts. We further proposed a location-spectrum iteration approach based on the Bayesian inference, which could alleviate the problems caused by the spectral difference between the burst and location templates. Our method is very suitable for scenarios with limited computation resources or time-sensitive applications, such as in-flight localization software, and low-latency localization for rapid follow-up observations.

  • In-orbit Performance of ME onboard Insight-HXMT in the first 5 years

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Introduction: The Medium Energy X-ray telescope (ME) is a collimated X-ray telescope onboard the Insight hard X-ray modulation telescope (Insight-HXMT) satellite. It has 1728 Si-PIN pixels readout using 54 low noise application-specific integrated circuits (ASICs). ME covers the energy range of 5-30 keV and has a total detection area of 952 cm2. The typical energy resolution of ME at the beginning of the mission is 3 keV at 17.8 keV (Full Width at Half Maximum, FWHM) and the time resolution is 255 us. In this study, we present the in-orbit performance of ME in its first 5 years of operation. Methods: The performance of ME was monitored using onboard radioactive sources and astronomical X-ray objects. ME carries six 241Am radioactive sources for onboard calibration, which can continuously illuminate the calibration pixels. The long-term performance evolution of ME can be quantified using the properties of the accumulated spectra of the calibration pixels. In addition, observations of the Crab Nebula and the pulsar were used to check the long-term evolution of the detection efficiency as a function of energy. Conclusion: After 5 years of operation, 742 cm2 of the Si-PIN pixels were still working normally. The peak positions of 241Am emission lines gradually shifted to the high energy region, implying a slow increase in ME gain of 1.43%. A comparison of the ME spectra of the Crab Nebula and the pulsar shows that the E-C relations and the redistribution matrix file are still acceptable for most data analysis works, and there is no detectable variation in the detection efficiency.

  • In-orbit Performance of ME onboard Insight-HXMT in the first 5 years

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Introduction: The Medium Energy X-ray telescope (ME) is a collimated X-ray telescope onboard the Insight hard X-ray modulation telescope (Insight-HXMT) satellite. It has 1728 Si-PIN pixels readout using 54 low noise application-specific integrated circuits (ASICs). ME covers the energy range of 5-30 keV and has a total detection area of 952 cm2. The typical energy resolution of ME at the beginning of the mission is 3 keV at 17.8 keV (Full Width at Half Maximum, FWHM) and the time resolution is 255 us. In this study, we present the in-orbit performance of ME in its first 5 years of operation. Methods: The performance of ME was monitored using onboard radioactive sources and astronomical X-ray objects. ME carries six 241Am radioactive sources for onboard calibration, which can continuously illuminate the calibration pixels. The long-term performance evolution of ME can be quantified using the properties of the accumulated spectra of the calibration pixels. In addition, observations of the Crab Nebula and the pulsar were used to check the long-term evolution of the detection efficiency as a function of energy. Conclusion: After 5 years of operation, 742 cm2 of the Si-PIN pixels were still working normally. The peak positions of 241Am emission lines gradually shifted to the high energy region, implying a slow increase in ME gain of 1.43%. A comparison of the ME spectra of the Crab Nebula and the pulsar shows that the E-C relations and the redistribution matrix file are still acceptable for most data analysis works, and there is no detectable variation in the detection efficiency.

  • Flare Quasi-Periodic Pulsation Associated with Recurrent Jets

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Quasi-periodic pulsations (QPPs), which carry time features and plasma characteristics of flare emissions, are frequently observed in light curves of solar/stellar flares. In this paper, we investigated non-stationary QPPs associated with recurrent jets during an M1.2 flare on 2022 July 14. A quasi-period of about 45$\pm$10 s, determined by the wavelet transform technique, is simultaneously identified at wavelengths of soft/hard X-ray and microwave emissions, which are recorded by the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor, Fermi, and the Nobeyama Radio Polarimeters, respectively. A group of recurrent jets with an intermittent cadence of about 45$\pm$10 s are found in Atmospheric Imaging Assembly (AIA) image series at 304 {\AA}, but they are 180-s earlier than the flare QPP. All observational facts suggest that the flare QPP could be excited by recurrent jets, and they should be associated with nonthermal electrons that are periodically accelerated by a repeated energy release process, like repetitive magnetic reconnection. Moreover, the same quasi-period is discovered at double footpoints connected by a hot flare loop in AIA 94 {\AA}, and the phase speed is measured to 1420 km/s. Based on the differential emission measure, the average temperatures, number densities, and magnetic field strengths at the loop top and footpoint are estimated to 7.7/6.7 MK, 7.5/3.6*10^{10} cm ^{-3}, and 143/99 G, respectively. Our measurements indicate that the 45-s QPP is probably modulated by the kink-mode wave of the flare loop.

  • A Localization Method of High Energy Transients for All-Sky Gamma-Ray Monitor

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Fast and reliable localization of high-energy transients is crucial for characterizing the burst properties and guiding the follow-up observations. Localization based on the relative counts of different detectors has been widely used for all-sky gamma-ray monitors. There are two major methods for this counts distribution localization: $\chi^{2}$ minimization method and the Bayesian method. Here we propose a modified Bayesian method that could take advantage of both the accuracy of the Bayesian method and the simplicity of the $\chi^{2}$ method. With comprehensive simulations, we find that our Bayesian method with Poisson likelihood is generally more applicable for various bursts than $\chi^{2}$ method, especially for weak bursts. We further proposed a location-spectrum iteration approach based on the Bayesian inference, which could alleviate the problems caused by the spectral difference between the burst and location templates. Our method is very suitable for scenarios with limited computation resources or time-sensitive applications, such as in-flight localization software, and low-latency localization for rapid follow-up observations.

  • The design and implementation of GECAM satellite payload performance monitoring software

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Background The Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) is primarily designed to spot gamma-ray bursts corresponding to gravitational waves. In order to achieve stable observations from various astronomical phenomena, the payload performance need to be monitored during the in-orbit operation. Method This article describes the design and implementation of GECAM satellite payload performance monitoring (GPPM) software. The software extracts the payload status and telescope observations (light curves, energy spectrums, characteristic peak fitting of energy spectrums, etc) from the payload data. Considering the large amount of payload status parameters in the engineering data, we have designed a method of parameter processing based on the configuration tables. This method can deal with the frequent changes of the data formats and facilitate program maintenance. Payload status and performance are monitored through defined thresholds and monitoring reports. The entire software is implemented in python language and the huge amount of observation data is stored in MongoDB. Conclusion The design and implementation of GPPM software have been completed, tested with ground and in-orbit payload data. The software can monitor the performance of GECAM payload effectively. The overall design of the software and the data processing method can be applied to other satellites.

  • The performance of SiPM-based gamma-ray detector (GRD) of GECAM-C

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: As a new member of GECAM mission, the GECAM-C (also called High Energy Burst Searcher, HEBS) is a gamma-ray all-sky monitor onboard SATech-01 satellite, which was launched on July 27th, 2022 to detect gamma-ray transients from 6 keV to 6 MeV, such as Gamma-Ray Bursts (GRBs), high energy counterpart of Gravitational Waves (GWs) and Fast Radio Bursts (FRBs), and Soft Gamma-ray Repeaters (SGRs). Together with GECAM-A and GECAM-B launched in December 2020, GECAM-C will greatly improve the monitoring coverage, localization, as well as temporal and spectral measurements of gamma-ray transients. GECAM-C employs 12 SiPM-based Gamma-Ray Detectors (GRDs) to detect gamma-ray transients . In this paper, we firstly give a brief description of the design of GECAM-C GRDs, and then focus on the on-ground tests and in-flight performance of GRDs. We also did the comparison study of the SiPM in-flight performance between GECAM-C and GECAM-B. The results show GECAM-C GRD works as expected and is ready to make scientific observations.

  • In-orbit performance of LE onboard Insight-HXMT in the first 5 years

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Purpose: The Low-Energy X-ray telescope (LE) is a main instrument of the Insight-HXMT mission and consists of 96 Swept Charge Devices (SCD) covering the 1-10 keV energy band. The energy gain and resolution are continuously calibrated by analysing Cassiopeia A (Cas A) and blank sky data, while the effective areas are also calibrated with the observations of the Crab Nebula. In this paper, we present the evolution of the in-orbit performances of LE in the first 5 years since launch. Methods: The Insight-HXMT Data Analysis Software package (HXMTDAS) is utilized to extract the spectra of Cas A, blank sky, and Crab Nebula using different Good Time Interval (GTI) selections. We fit a model with a power-law continuum and several Gaussian lines to different ranges of Cas A and blank sky spectra to get peak energies of their lines through xspec. After updating the energy gain calibration in CALibration DataBase (CALDB), we rerun the Cas A data to obtain the energy resolution. An empirical function is used to modify the simulated effective areas so that the background-subtracted spectrum of the Crab Nebula can best match the standard model of the Crab Nebula. Results: The energy gain, resolution, and effective areas are calibrated every month. The corresponding calibration results are duly updated in CALDB, which can be downloaded and used for the analysis of Insight-HXMT data. Simultaneous observations with NuSTAR and NICER can also be used to verify our derived results. Conclusion: LE is a well calibrated X-ray telescope working in 1-10 keV band. The uncertainty of LE gain is less than 20 eV in 2-9 keV band and the uncertainty of LE resolution is less than 15eV. The systematic errors of LE, compared to the model of the Crab Nebula, are lower than 1.5% in 1-10 keV.

  • In-orbit performance of LE onboard Insight-HXMT in the first 5 years

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Purpose: The Low-Energy X-ray telescope (LE) is a main instrument of the Insight-HXMT mission and consists of 96 Swept Charge Devices (SCD) covering the 1-10 keV energy band. The energy gain and resolution are continuously calibrated by analysing Cassiopeia A (Cas A) and blank sky data, while the effective areas are also calibrated with the observations of the Crab Nebula. In this paper, we present the evolution of the in-orbit performances of LE in the first 5 years since launch. Methods: The Insight-HXMT Data Analysis Software package (HXMTDAS) is utilized to extract the spectra of Cas A, blank sky, and Crab Nebula using different Good Time Interval (GTI) selections. We fit a model with a power-law continuum and several Gaussian lines to different ranges of Cas A and blank sky spectra to get peak energies of their lines through xspec. After updating the energy gain calibration in CALibration DataBase (CALDB), we rerun the Cas A data to obtain the energy resolution. An empirical function is used to modify the simulated effective areas so that the background-subtracted spectrum of the Crab Nebula can best match the standard model of the Crab Nebula. Results: The energy gain, resolution, and effective areas are calibrated every month. The corresponding calibration results are duly updated in CALDB, which can be downloaded and used for the analysis of Insight-HXMT data. Simultaneous observations with NuSTAR and NICER can also be used to verify our derived results. Conclusion: LE is a well calibrated X-ray telescope working in 1-10 keV band. The uncertainty of LE gain is less than 20 eV in 2-9 keV band and the uncertainty of LE resolution is less than 15eV. The systematic errors of LE, compared to the model of the Crab Nebula, are lower than 1.5% in 1-10 keV.