您选择的条件: Zhengyi Chen
  • Asymmetric star formation triggered by gas inflow in a barred lenticular galaxy PGC 34107

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Comparing to the inactive and gas-poor normal lenticular galaxies (S0s) in the local universe, we study a barred star-forming S0 galaxy, PGC 34107, which has been observed by the Centro Astron\'{o}mico Hispano Alem\'{a}n (CAHA) 3.5-m telescope and the Northern Extended Millimeter Array (NOEMA). The spatially resolved ionized gas and molecular gas traced by $^{12}$CO(1-0), hereafter CO(1-0), show the similar distribution and kinematics to the stellar component with an off-center star-forming region, $\sim$380 pc away from the center. The resolved kinematics of molecular CO(1-0) emission reveals that there is a blueshifted (redshifted) velocity component on the receding (approaching) side of the galaxy along the stellar bar. This might provide a plausible evidence of non-circular motion, such as the bar-induced molecular gas inflow. The velocity of molecular gas inflow decreases with approaching towards the peak of the off-center star formation in the north, which might be associated with the inner Lindblad resonance (ILR). In addition to CO(1-0), we also detect the isotopic line of $^{13}$CO(1-0). Most $\rm H\alpha$, CO(1-0) and $^{13}$CO(1-0) emissions are concentrated on this northern star-forming region. We find that PGC 34107 follows the local stellar mass-metallicity relation, star-forming main sequence, and the Kennicutt-Schmidt law. The resolved and integrated molecular gas main sequence suggest that there is a higher gas fraction in the galaxy central region, which supports a scenario that the bar-induced gas reservoir provides the raw material, and subsequently triggers the central star formation.

  • PGC 38025: A Star-forming Lenticular Galaxy With an Off-nuclear Star-forming Core

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Lenticular galaxies (S0s) were considered mainly as passive evolved spirals due to environmental effects for a long time; however, most S0s in the field cannot fit into this common scenario. In this work, we study one special case, SDSS J120237.07+642235.3 (PGC 38025), a star-forming field S0 galaxy with an off-nuclear blue core. We present optical integral field spectroscopic (IFS) observation with the 3.5 meter telescope at Calar Alto (CAHA) Observatory, and high-resolution millimeter observation with the NOrthern Extended Millimeter Array (NOEMA). We estimated the star formation rate (SFR = 0.446 $M_\odot yr^{-1}$) and gaseous metallicity (12 + log(O/H) = 8.42) for PGC 38025, which follows the star formation main sequence and stellar mass - metallicity relation. We found that the ionized gas and cold molecular gas in PGC 38025 show the same spatial distribution and kinematics, whilst rotating misaligned with stellar component. The off-nuclear blue core is locating at the same redshift as PGC 38025 and its optical spectrum suggest it is \rm H\,{\sc ii} region. We suggest that the star formation in PGC 38025 is triggered by a gas-rich minor merger, and the off-nuclear blue core might be a local star-formation happened during the accretion/merger process.