您选择的条件: Sara Palmerini
  • New Multielement Isotopic Compositions of Presolar SiC Grains: Implications for Their Stellar Origins

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We report NanoSIMS Si and Mg-Al isotopic data (and C, N, and Ti isotopic data when available) for 85 submicron- to micron-sized presolar SiC grains from the CM2 Murchison meteorite, including 60 MS, 8 AB1, 8 X, 7 AB2, and 2 Y grains. The MS and Y grain data demonstrate that (1) C and N contamination mainly appears as surface contamination, and sufficient presputtering is needed to expose a clean grain surface for obtaining intrinsic C and N signals, and (2) Mg and Al contamination appears as adjacent grains and rims, and high-resolution imaging and the choice of small regions of interest during data reduction together are effective in suppressing the contamination. Our results strongly indicate that previous studies on presolar SiC grains could have sampled differing degrees of contamination for C, N, Mg, and Al. Compared to the literature data, our new MS and Y grains are in better agreement with carbon star observations for both the C and N isotopic ratios. By comparing our new, tighter distributions of 12C/13C, 14N/15N, and initial 26Al/27Al ratios for MS and Y grains with FRUITY AGB stellar models, we provide more stringent constraints on the occurrence of cool bottom processing and the production of 26Al in N-type carbon stars, classical asymptotic giant branch stars.

  • Oxygen and Aluminum-Magnesium Isotopic Systematics of Presolar Nanospinel Grains from CI Chondrite Orgueil

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Presolar oxide grains have been previously divided into several groups (Group 1 to 4) based on their isotopic compositions, which can be tied to several stellar sources. Much of available data was acquired on large grains, which may not be fully representative of the presolar grain population present in meteorites. We present here new O isotopic data for 74 small presolar oxide grains (~200 nm in diameter on average) from Orgueil and Al-Mg isotopic systematics for 25 of the grains. Based on data-model comparisons, we show that (i) Group 1 and Group 2 grains more likely originated in low-mass first-ascent (red giant branch; RGB) and/or second-ascent (asymptotic giant branch; AGB) red giant stars and (ii) Group 1 grains with (26Al/27Al)0 >= 5x10^-3 and Group 2 grains with (26Al/27Al)0 <= 1x10^-2 all likely experienced extra circulation processes in their parent low-mass stars but under different conditions, resulting in proton-capture reactions occurring at enhanced temperatures. We do not find any large 25Mg excess in Group 1 oxide grains with large 17O enrichments, which provides evidence that 25Mg is not abundantly produced in low-mass stars. We also find that our samples contain a larger proportion of Group 4 grains than so far suggested in the literature for larger presolar oxide grains (~400 nm). We also discuss our observations in the light of stellar dust production mechanisms.