按提交时间
按主题分类
按作者
按机构
您选择的条件: Hao Li
  • Real-time Abnormal Detection of GWAC Light Curve based on Wavelet Transform Combined with GRU-Attention

    分类: 天文学 >> 天文学 提交时间: 2024-05-24 合作期刊: 《Research in Astronomy and Astrophysics》

    摘要: Nowadays, astronomy has entered the era of Time-Domain Astronomy, and the study of the time-varying light curves of various types of objects is of great significance in revealing the physical properties and evolutionary history of celestial bodies. The Ground-based Wide Angle Cameras telescope, on which this paper is based, has observed more than 10 million light curves, and the detection of anomalies in the light curves can be used to rapidly detect transient rare phenomena such as microgravity lensing events from the massive data. However, the traditional statistically based anomaly detection methods cannot realize the fast processing of massive data. In this paper, we propose a Discrete Wavelet (DW)-Gate Recurrent Unit-Attention (GRU-Attention) light curve warning model. Wavelet transform has good effect on data noise reduction processing and feature extraction, which can provide richer and more stable input features for a neural network, and the neural network can provide more flexible and powerful output model for wavelet transform. Comparison experiments show an average improvement of 61% compared to the previous pure long-short-term memory unit (LSTM) model, and an average improvement of 53.5% compared to the previous GRU model. The efficiency and accuracy of anomaly detection in previous paper work are not good enough, the method proposed in this paper possesses higher efficiency and accuracy, which incorporates the Attention mechanism to find out the key parts of the light curve that determine the anomalies. These parts are assigned higher weights, and in the actual anomaly detection, the star is detected with 83.35% anomalies on average, and the DW-GRU-Attention model is compared with the DW-LSTM model, and the detection result f1 is improved by 5.75% on average, while having less training time, thus providing valuable information and guidance for astronomical observation and research.

  • Shock-induced stripping of satellite ISM/CGM in IllustrisTNG clusters at $z\sim0$

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Using the IllustrisTNG simulation, we study the interaction of large-scale shocks with the circumgalactic medium (CGM) and interstellar medium (ISM) of star-forming (SF) satellite galaxies in galaxy clusters. These shocks are usually produced by mergers and massive accretion. Our visual inspection shows that approximately half of SF satellites have encountered shocks in their host clusters at $z\leq0.11$. After a satellite crosses a shock front and enters the postshock region, the ram pressure on it is boosted significantly. Both the CGM and ISM can be severely impacted, either by striping or compression. The stripping of the ISM is particularly important for low-mass galaxies with $\log (M_{*}/M_{\odot})<10$ and can occur even in the outskirts of galaxy clusters. In comparison, satellites that do not interact with shocks lose their ISM only in the inner regions of clusters. About half of the ISM is stripped within about 0.6 Gyr after it crosses the shock front. Our results show that shock-induced stripping plays an important role in quenching satellite galaxies in clusters.

  • Tomography of a solar plage with the Tenerife Inversion Code

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We apply the Tenerife Inversion Code (TIC) to the plage spectropolarimetric observations obtained by the Chromospheric LAyer SpectroPolarimeter (CLASP2). These unprecedented data consist of full Stokes profiles in the spectral region around the Mg II h and k lines for a single slit position, with around two thirds of the 200 arcsec slit crossing a plage region and the rest crossing an enhanced network. A former analysis of these data had allowed us to infer the longitudinal component of the magnetic field by applying the weak field approximation (WFA) to the circular polarization profiles, and to assign the inferred magnetic fields to different layers of the solar atmosphere based on the results of previous theoretical radiative transfer investigations. In this work, we apply the recently developed TIC to the same data. We obtain the stratified model atmosphere that fits the intensity and circular polarization profiles at each position along the spectrograph slit and we compare our results for the longitudinal component of the magnetic field with the previously obtained WFA results, highlighting the generally good agreement in spite of the fact that the WFA is known to produce an underestimation when applied to the outer lobes of the Mg II h and k circular polarization profiles. Finally, we use the inverted model atmospheres to give a rough estimation of the energy that could be carried by Alfv\`en waves propagating along the chromosphere in the plage and network regions, showing that it is sufficient to compensate the estimated energy losses in the chromosphere of solar active regions.

  • Shock-induced stripping of satellite ISM/CGM in IllustrisTNG clusters at $z\sim0$

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Using the IllustrisTNG simulation, we study the interaction of large-scale shocks with the circumgalactic medium (CGM) and interstellar medium (ISM) of star-forming (SF) satellite galaxies in galaxy clusters. These shocks are usually produced by mergers and massive accretion. Our visual inspection shows that approximately half of SF satellites have encountered shocks in their host clusters at $z\leq0.11$. After a satellite crosses a shock front and enters the postshock region, the ram pressure on it is boosted significantly. Both the CGM and ISM can be severely impacted, either by striping or compression. The stripping of the ISM is particularly important for low-mass galaxies with $\log (M_{*}/M_{\odot})<10$ and can occur even in the outskirts of galaxy clusters. In comparison, satellites that do not interact with shocks lose their ISM only in the inner regions of clusters. About half of the ISM is stripped within about 0.6 Gyr after it crosses the shock front. Our results show that shock-induced stripping plays an important role in quenching satellite galaxies in clusters.

  • Detection of Flare-induced Plasma Flows in the Corona of EV Lac with X-ray Spectroscopy

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Stellar flares are characterized by sudden enhancement of electromagnetic radiation from the atmospheres of stars. Compared to their solar counterparts, our knowledge on the coronal plasma dynamics of stellar flares and their connection to coronal mass ejections (CMEs) remains very limited. With time-resolved high-resolution spectroscopic observations from the \textit{Chandra} X-ray observatory, we detected noticeable coronal plasma flows during several stellar flares on a nearby dMe star EV Lac. In the observed spectra of O~{\sc{viii}} (3 MK), Fe~{\sc{xvii}} (6 MK), Mg~{\sc{xii}} (10 MK), and Si~{\sc{xiv}} (16 MK) lines, these flare-induced upflows/downflows appear as significant Doppler shifts of several tens to \speed{130}, and the upflow velocity generally increases with temperature. Variable line ratios of the Si~{\sc{xiii}} triplet reveal that these plasma flows in most flares are accompanied by an increase of the coronal plasma density and temperature. We interpret these results as X-ray evidences for chromospheric evaporation on EV Lac. In two successive flares, the plasma flow pattern and a sharp increase of the measured coronal density are highly suggestive of explosive evaporation. The transition from redshifts to blueshifts in such an explosive evaporation occurs at a temperature of at least 10 MK, much higher than that observed in solar flares ($\sim$1 MK). However, in one flare the cool and warm upflows appear to be accompanied by a decreasing plasma density, which might be explained by a stellar filament/prominence eruption coupled to this flare. These results provide important clues to understand the coronal plasma dynamics during flares on M dwarfs.

  • Naked emergence of an anti-Hale active region I. Overall evolution and magnetic properties

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: {In order to understand the emergence of the active region, we investigate the emerging process and magnetic properties of a naked anti-Hale active region during the period between August 24 to 25, 2018.} {Using the data from Helioseismic and Magnetic Imager on board the Soar Dynamic Observatory and the New Vacuum Solar Telescope, we calculated different evolving parameters (such as pole separation, tilt angle) and magnetic parameters (such as vertical electric current, force-free parameter, relative magnetic helicity) during the emergence of the active region. With these calculated parameters and some reasonable assumptions, we use two different methods to estimate the twist of the active region.} {The magnetic flux and pole separation continue increasing while the tilt angle exhibits a decreasing pattern during the emergence of the active region. The increase of the pole separation is mainly contributed as a result of the enhancement in the longitude direction. A power-law relationship between pole separation and total flux is found during the emergence of the active region. On the other hand, it is found that both the positive and negative electric currents increased equivalently and the average flux-weighted force-free parameter $\tilde \alpha$ remains almost consistently positive, on the order of $\sim$ 10$^{-8}$ m$^{-1}$. The relative magnetic helicity is mainly contributed by the shear term, while the relative magnetic helicity injection flux of the shear term changes its sign at the latter stage of the emergence. The twist number of the whole active region remains on the order of 10$^{-1}$ turns during the emergence of the active region.} {We find that the magnetic flux tube with low twist also could emerge into the solar atmosphere.}

  • ELUCID VII: Using Constrained Hydro Simulations to Explore the Gas Component of the Cosmic Web

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Using reconstructed initial conditions in the SDSS survey volume, we carry out constrained hydrodynamic simulations in three regions representing different types of the cosmic web: the Coma cluster of galaxies; the SDSS great wall; and a large low-density region at $z\sim 0.05$. These simulations, which include star formation and stellar feedback but no AGN formation and feedback, are used to investigate the properties and evolution of intergalactic and intra-cluster media. About half of the warm-hot intergalactic gas is associated with filaments in the local cosmic web. Gas in the outskirts of massive filaments and halos can be heated significantly by accretion shocks generated by mergers of filaments and halos, respectively, and there is a tight correlation between gas temperature and the strength of the local tidal field. The simulations also predict some discontinuities associated with shock fronts and contact edges, which can be tested using observations of the thermal SZ effect and X-rays. A large fraction of the sky is covered by Ly$\alpha$ and OVI absorption systems, and most of the OVI systems and low-column density HI systems are associated with filaments in the cosmic web. The constrained simulations, which follow the formation and heating history of the observed cosmic web, provide an important avenue to interpret observational data. With full information about the origin and location of the cosmic gas to be observed, such simulations can also be used to develop observational strategies.

  • Massive Star-Forming Galaxies Have Converted Most of Their Halo Gas into Stars

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In the local Universe, the efficiency for converting baryonic gas into stars is very low. In dark matter halos where galaxies form and evolve, the average efficiency varies with galaxy stellar mass and has a maximum of about twenty percent for Milky-Way-like galaxies. The low efficiency at higher mass is believed to be produced by some quenching processes, such as the feedback from active galactic nuclei. We perform an analysis of weak lensing and satellite kinematics for SDSS central galaxies. Our results reveal that the efficiency is much higher, more than sixty percent, for a large population of massive star-forming galaxies around $10^{11}M_{\odot}$. This suggests that these galaxies acquired most of the gas in their halos and converted it into stars without being affected significantly by quenching processes. This population of galaxies is not reproduced in current galaxy formation models, indicating that our understanding of galaxy formation is incomplete. The implications of our results on circumgalactic media, star formation quenching and disc galaxy rotation curves are discussed. We also examine systematic uncertainties in halo-mass and stellar-mass measurements that might influence our results.

  • A Spontaneously Formed Plasmonic-MoTe2 Hybrid Platform for Ultrasensitive Raman Enhancement

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: To develop highly sensitive, stable and repeatable surface-enhanced Raman scattering (SERS) substrates is crucial for analytical detection, which is a challenge for traditional metallic structures. Herein, by taking advantage of the high surface activity of 1T' transition metal telluride, we have fabricated high-density gold nanoparticles (AuNPs) that are spontaneously in-situ prepared on the 1T' MoTe2 atomic layers via a facile method, forming a plasmonic-2D material hybrid SERS substrate. This AuNP formation is unique to the 1T' phase, which is repressed in 2H MoTe2 with less surface activity. The hybrid structure generates coupling effects of electromagnetic and chemical enhancements, as well as excellent molecule adsorption, leading to the ultrasensitive (4*10^-17 M) and reproducible detection. Additionally, the immense fluorescence and photobleaching phenomena are mostly avoided. Flexible SERS tapes have been demonstrated in practical applications. Our approach facilitates the ultrasensitive SERS detection by a facile method, as well as the better mechanistic understanding of SERS beyond plasmonic effects.

  • Superconducting microstrip single-photon detector with system detection efficiency over 90% at 1550 nm

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Generally, a superconducting nanowire single-photon detector (SNSPD) is composed of wires with a typical width of ~100 nm. Recent studies have found that superconducting strips with a micrometer-scale width can also detect single photons. Compared with the SNSPD, the superconducting microstrip single-photon detector (SMSPD) has smaller kinetic inductance, higher working current, and lower requirement in fabrication accuracy, providing potential applications in the development of ultra-large active area detectors. However, the study on SMSPD is still in its infancy, and the realization of its high-performance and practical use remains an opening question. This study demonstrates a NbN SMSPD with a saturated system detection efficiency (SDE) of ~92.2% at a dark count rate of ~200 cps, a polarization sensitivity of ~1.03, and a minimum timing jitter of ~48 ps, at the telecom wavelength of 1550 nm when coupled with a single mode fiber and operated at 0.84 K. Furthermore, the detector's SDE is over 70% when operated at a 2.1-K closed-cycle cryocooler.

  • Light-driven C-H bond activation mediated by 2D transition metal dichalcogenides

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: C-H bond activation enables the facile synthesis of new chemicals. While C-H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C-H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially resolved fashion. Through the first-principle calculations, we unravel that the defects and oxidized states in 2D TMDCs lead to efficient C-H activation and chemical reaction. Furthermore, we exploit the light-controlled point-and-shoot chemical reaction for versatile carbon dot patterning and optical encoding of encrypted information. Our results will shed light on 2D materials for C-H activation in a variety of organic compounds for applications in organic chemistry, photonic materials, and environmental remediation.

  • Tunable single-mode laser on thin film lithium niobate

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Erbium-doped lithium niobate on insulator (LNOI) laser plays an important role in the complete photonic integrated circuits (PICs). Here, we demonstrate an integrated tunable whisper galley single mode laser (WGSML) by making use of a pair of coupled microdisk and microring on LNOI. A 974 nm single-mode pump light can have an excellent resonance in the designed microdisk, which is beneficial to the whisper gallery mode (WGM) laser generation. The WGSML at 1560.40 nm with a maximum 31.4 dB side mode suppression ratio (SMSR) has been achieved. By regulating the temperature, WGSMLs output power increased and the central wavelength can be changed from 1560.30 nm to 1560.40 nm. What's more, 1560.60 nm and 1565.00 nm WGSMLs have been achieved by changing the coupling gap width between microdisk and microring. We can also use the electro-optic effect of LNOI to obtain more accurate adjustable WGSMLs in further research.

  • A photon counting reconstructive spectrometer combining metasurfaces and superconducting nanowire single-photon detectors

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Faint light spectroscopy has many important applications such as fluorescence spectroscopy, lidar and astronomical observations. However, long measurement time limit its application on real-time measurement. In this work, a photon counting reconstructive spectrometer combining metasurfaces and superconducting nanowire single photon detectors (SNSPDs) was proposed. A prototype device was fabricated on a silicon on isolator (SOI) substrate, and its performance was characterized. Experiment results show that this device support spectral reconstruction of mono-color lights with a resolution of 2 nm in the wavelength region of 1500 nm ~ 1600 nm. The detection efficiency of this device is 1.4% ~ 3.2% in this wavelength region. The measurement time required by this photon counting reconstructive spectrometer was also investigated experimentally, showing its potential to be applied in the scenarios requiring real-time measurement.

  • High Performance Polarization Management Devices Based on Thin-Film Lithium Niobate

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: High-speed polarization management is highly desirable for many applications, such as remote sensing, telecommunication, and medical diagnosis. However, most of the approaches for polarization management rely on bulky optical components that are slow to respond, cumbersome to use, and sometimes with high drive voltages. Here, we overcome these limitations by harnessing photonic integrated circuits based on thin-film lithium niobate platform. We successfully realize a portfolio of thin-film lithium niobate devices for essential polarization management functionalities, including arbitrary polarization generation, fast polarization measurement, polarization scrambling, and automatic polarization control. The present devices feature ultra-fast control speed, low drive voltages, low optical losses and compact footprints. Using these devices, we achieve high fidelity polarization generation with a polarization extinction ratio up to 41.9 dB, fast polarization scrambling with a scrambling rate up to 65 Mrad/s, and endless polarization control with a tracking speed up to 10 Krad/s, all of which are best results in integrated optics. The demonstrated devices unlock a drastically new level of performance and scales in polarization management devices, leading to a paradigm shift in polarization management.

  • Nonlinear manipulation of orbital angular momentum spectra with second- and third- harmonic generation in a quasi-periodically poled crystal

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Optical orbital angular momentum (OAM), as an important degree of freedom of light, has been attracted extensive attention, due to its intrinsic feature of natural discrete infinite dimension. Manipulation of OAM spectra is crucial for many impressive applications from classical to quantum realms, in particular, nonlinear manipulation of OAM spectra. Here we realized the nonlinear manipulation of OAM spectra by using the simultaneous second- and third-harmonic generation in a single nonlinear crystal of quasi-periodically poled potassium titanyl phosphate, for fundamental waves with a variety of OAM spectra, especially for customized OAM spectra of the second and third harmonics. The experimental results confirmed the theoretical predictions. Our approach not only provides a novel way to manipulate OAM spectra at new shorter wavelengths that are hard to be directly generated, but also may find new applications towards multiplexing in classical optics and high-dimensional information processing in quantum optics.

  • Chip-scale Spontaneous Quasi-Phase-Matched Micro-Racetrack Resonator

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Due to their capacity for non-classical light generation, high-efficiency second-order nonlinear parametric processes play an important role in quantum photonic technology, and chip-scale realization of these processes is recognized as the key to building efficient light sources for integrated quantum photonic circuits. To achieve ultra-high nonlinear conversion efficiency, traditional method uses quasi-phase matching (QPM) technology. However, QPM requires electric field poling, which is incompatible with the CMOS fabrication process, and this hinders the wafer-scale production of integrated photonic circuits. In this paper, we demonstrate efficient spontaneous quasi-phase matched (SQPM) frequency conversion in a micro-racetrack resonator. Our approach does not involve poling, but exploits the anisotropy of the ferroelectric crystals to allow the phase-matching condition to be fulfilled spontaneously as the TE-polarized light circulates in a specifically designed racetrack resonator. SQPM second harmonic generation is observed with a normalized intracavity conversion efficiency of 0.85%/W, corresponding to the 111st-order QPM. This could theoretically reach 186,000%/W by first-order QPM. In this case such high intracavity conversion efficiency can be implemented in practice with an optimized outward coupling. Our configurable SQPM approach will benefit the application of nonlinear frequency conversion in chip-scale integrated photonics with CMOS-compatible fabrication processes, and is applicable to other on-chip nonlinear processes such as quantum frequency conversion or frequency-comb generation.

  • Large Quality Factor Enhancement Based on Cascaded Uniform Lithium Niobate Bichromatic Photonic Crystal Cavities

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: In this paper, by cascading several bichromatic photonic crystals we demonstrate that the quality factor can be much larger compared with that in an isolated cavity without increasing the total size of the device. We take lithium niobate photonic crystal as an example to illustrate that the simulated quality factor of the cascaded cavity can attain 10^5 with a 70{\deg} slant angle, which is an order of magnitude larger than that in isolated cavity. The device can be fabricated easily by current etching technique for lithium niobate. We have fabricated the proposed device experimentally including holes with 70{\deg} slant angle. This work is expected to provide guidance to the design of photonic crystal cavity with high-quality factor.

  • Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The tantalizing promise of quantum computational speedup in solving certain problems has been strongly supported by recent experimental evidence from a high-fidelity 53-qubit superconducting processor1 and Gaussian boson sampling (GBS) with up to 76 detected photons. Analogous to the increasingly sophisticated Bell tests that continued to refute local hidden variable theories, quantum computational advantage tests are expected to provide increasingly compelling experimental evidence against the Extended Church-Turing thesis. In this direction, continued competition between upgraded quantum hardware and improved classical simulations is required. Here, we report a new GBS experiment that produces up to 113 detection events out of a 144-mode photonic circuit. We develop a new high-brightness and scalable quantum light source, exploring the idea of stimulated squeezed photons, which has simultaneously near-unity purity and efficiency. This GBS is programmable by tuning the phase of the input squeezed states. We demonstrate a new method to efficiently validate the samples by inferring from computationally friendly subsystems, which rules out hypotheses including distinguishable photons and thermal states. We show that our noisy GBS experiment passes the nonclassicality test using an inequality, and we reveal non-trivial genuine high-order correlation in the GBS samples, which are evidence of robustness against possible classical simulation schemes. The photonic quantum computer, Jiuzhang 2.0, yields a Hilbert space dimension up to $10^{43}$, and a sampling rate $10^{24}$ faster than using brute-force simulation on supercomputers.