您选择的条件: Yu Bai
  • J-PLUS: Support Vector Machine Applied to STAR-GALAXY-QSOClassification

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Context. In modern astronomy, machine learning has proved to be efficient and effective to mine the big data from the newesttelescopes. Spectral surveys enable us to characterize millions of objects, while long exposure time observations and wide surveysconstrain their strides from millions to billions. Aims.In this study, we construct a supervised machine learning algorithm, to classify the objects in the Javalambre Photometric LocalUniverse Survey first data release (J-PLUS DR1). Methods.The sample set is featured with 12-waveband photometry, and magnitudes are labeled with spectrum-based catalogs, in-cluding Sloan Digital Sky Survey spectroscopic data, Large Sky Area Multi-Object Fiber Spectroscopic Telescope, and VERONCAT- Veron Catalog of Quasars & AGN. The performance of the classifier is presented with applications of blind test validations basedon RAdial Velocity Extension, Kepler Input Catalog, 2 MASS Redshift Survey, and the UV-bright Quasar Survey. A new algorithmis applied to constrain the extrapolation that could decrease accuracies for many machine learning classifiers. Results.The accuracies of the classifier are 96.5% in blind test and 97.0% in training cross validation. The F1-scores for each classare presented to show the precision of the classifier. We also discuss different methods to constrain the po

  • Stellar chromospheric activities revealed from the LAMOST-K2 time-domain survey

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: By using the LAMOST time-domain survey data, we study stellar activities based on the $\rm{H_{\alpha}}$ lines for about 2000 stars in four $K$2 plates. Two indices, $R_{\rm{H\alpha}}^{'}$ and $R_{\rm{H\alpha}}^{+}$, are computed from LAMOST spectra, the former of which is derived by excluding the photospheric contributions to the $\rm{H_{\alpha}}$ lines, while the latter is derived by further subtracting the non-dynamo driven chromospheric emission. Meanwhile, the periodicity and variation amplitudes are computed from \emph{K2} light curves. Both the $R_{\rm{H\alpha}}^{'}$-Ro relation and $R_{\rm{H\alpha}}^{+}$-Ro relation show complicated profiles in the non-saturated decay region. Hot stars show flatter slopes and higher activity level than cool stars, and the behaviour is more notable in the $R_{\rm{H\alpha}}^{+}$-$R_{o}$ relation. This is consistent with recent studies using other activity proxies, including $L_{\rm{x}}/L_{\rm{bol}}$, $R_{\rm{HK}}^{'}$ and amplitudes of optical light curves. % This may suggest different kinds of stars follow different power laws in the decay region. Most of our targets have multiple observations, and some of them exhibit significant variability of ${\rm{H\alpha}}$ emissions, which may cause the large scatters shown in the decay region. We find three targets exhibiting positive correlation in rotational phase, possibly indicating that their optical light curves are dominated by hot faculae rather than cool starspots.

  • A long-period pre-ELM system discovered from LAMOST medium-resolution survey

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present LAMOST~J041920.07+072545.4 (hereafter J0419), a close binary consisting of a bloated extremely low mass pre-white dwarf (pre-ELM WD) and a compact object with an orbital period of 0.607189~days. The large-amplitude ellipsoidal variations and the evident Balmer and He~I emission lines suggest a filled Roche lobe and ongoing mass transfer. No outburst events were detected in the 15 years of monitoring of J0419, indicating a very low mass transfer rate. The temperature of the pre-ELM, $T_\mathrm{eff} = 5793_{-133}^{+124}\,\rm K$, is cooler than the known ELMs, but hotter than most CV donors. Combining the mean density within the Roche lobe and the radius constrained from our SED fitting, we obtain the mass of the pre-ELM, $M_1 = 0.176\pm 0.014\,M_\odot$. The joint fitting of light and radial velocity curves yields an inclination angle of $i = 66.5_{-1.7}^{+1.4}$ degrees, corresponding to the compact object mass of $M_2 = 1.09\pm 0.05\,M_\odot$. The very bloated pre-ELM has a smaller surface gravity ($\log g = 3.9\pm 0.01$, $R_1 = 0.78 \pm 0.02\,R_\odot$) than the known ELMs or pre-ELMs. The temperature and the luminosity ($L_\mathrm{bol} = 0.62_{-0.10}^{+0.11}\,L_\odot$) of J0419 are close to the main sequence, which makes the selection of such systems through the HR diagram inefficient. Based on the evolutionary model, the relatively long period and small $\log g$ indicate that J0419 could be close to the "bifurcation period" in the orbit evolution, which makes J0419 to be a unique source to connect ELM/pre-ELM WD systems, wide binaries and cataclysmic variables.

  • The Nearest Neutron Star Candidate in a Binary Revealed by Optical Time-domain Surveys

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Recent studies have revealed the global deposition on Earth of radioactive elements (e.g., $^{60}$Fe) resulting from the metal-enriched ejecta of nearby (within $\sim 100$ pc) supernova explosions. The majority of neutron stars in our Solar neighborhood remain to be discovered. Here we report the discovery of the nearest ($127.7 \pm 0.3$ pc) neutron star candidate in the single-lined spectroscopic binary LAMOST J235456.76+335625.7 (hereafter J2354). Utilizing the multi-epoch spectra and high-cadence periodic light curves, we measure the mass of the visible star ($M_{\rm vis}=0.70\pm 0.05\ M_{\odot}$) and determine the mass function of the invisible object $f(M)=0.525 \pm 0.004\ M_{\odot}$, i.e., the mass of the unseen compact object is $M_{\rm inv} \geq 1.26 \pm 0.03M_{\odot}$. The excess UV emission due to a hot supramassive white dwarf is absent. Hence, it is likely that J2354 harbors a neutron star. J2354 is X-ray dim (the $0.1$--$2.4$ keV luminosity $<10^{30}\ {\rm erg\ s^{-1}}$) since it is not detected in the ROSAT all-sky surveys in X-ray. One-hour exceptionally sensitive radio follow-up observations with FAST, the largest single-dish radio telescope, failed to reveal any radio pulsating signals (the potential pulse power at $1.4$ GHz is $<6.8\times 10^{23}\ {\rm erg\ s^{-1}}$). Hence, the neutron star candidate in J2354 can only be discovered via our time-resolved observations. The alternative scenario involving a nearby supramassive cold white dwarf cannot be fully excluded. Our discovery demonstrates a promising way to unveil the missing population of backyard inactive neutron stars or supramassive cold white dwarfs in binaries by exploring the optical time domain, thereby facilitating understanding of the supernovae explosion and metal-enrichment history in our Solar neighborhood.

  • White dwarfs identified in LAMOST Data Release 5

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In this paper, we report white dwarfs identified in the 5th Data Release of the Large Area Multi-Object fibre Spectroscopic Telescope, including spectral types of DA, DB, DC, DZ, and so on. There are 2 625 DA spectra of 2 281 DA stars, 182 DB spectra of 166 DB stars, 62 DC spectra of 58 DC stars, 36 DZ spectra of 33 DZ stars and many other types identified, in addition to our previous paper (Data Release 2). Among those sources, 393 DA stars and 46 DB stars are new identifications after cross-matching with the literature. In order to select DA candidates, we use the classification result from the LAMOST pipeline, colour-colour cut method and a random forest machine learning method. For DBs, since there is no template for DB in the pipeline model, a random forest machine learning method is chosen to select candidates. All the WD candidates have been visually checked individually. The parameters of effective temperature, surface gravity, mass, and cooling age have been estimated for relatively high signal-to-noise ratio DAs and DBs. The peaks of the DA and DB mass distributions are found to be around 0.62Msun and 0.65Msun, respectively. Finally, the data and method we used to select white dwarf candidates for the second phase of LAMOST survey are also addressed in this paper.

  • A dynamically discovered and characterized non-accreting neutron star -- M dwarf binary candidate

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Optical time-domain surveys can unveil and characterize exciting but less-explored non-accreting and/or non-beaming neutron stars (NS) in binaries. Here we report the discovery of such a NS candidate using the LAMOST spectroscopic survey. The candidate, designated LAMOST J112306.9+400736 (hereafter J1123), is in a single-lined spectroscopic binary containing an optically visible M star. The star's large radial velocity variation and ellipsoidal variations indicate a relatively massive unseen companion. Utilizing follow-up spectroscopy from the Palomar 200-inch telescope and high-precision photometry from TESS, we measure a companion mass of $1.24_{-0.03}^{+0.03}~M_{\odot}$. Main-sequence stars with this mass are ruled out, leaving a NS or a massive white dwarf (WD). Although a massive WD cannot be ruled out, the lack of UV excess radiation from the companion supports the NS hypothesis. Deep radio observations with FAST yielded no detections of either pulsed or persistent emission. J1123 is not detected in numerous X-ray and gamma-ray surveys. These non-detections suggest that the NS candidate is not presently accreting and pulsing. Our work exemplifies the capability of discovering compact objects in non-accreting close binaries by synergizing the optical time-domain spectroscopy and high-cadence photometry.

  • The Nearest Neutron Star Candidate in a Binary Revealed by Optical Time-domain Surveys

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Recent studies have revealed the global deposition on Earth of radioactive elements (e.g., $^{60}$Fe) resulting from the metal-enriched ejecta of nearby (within $\sim 100$ pc) supernova explosions. The majority of neutron stars in our Solar neighborhood remain to be discovered. Here we report the discovery of the nearest ($127.7 \pm 0.3$ pc) neutron star candidate in the single-lined spectroscopic binary LAMOST J235456.76+335625.7 (hereafter J2354). Utilizing the multi-epoch spectra and high-cadence periodic light curves, we measure the mass of the visible star ($M_{\rm vis}=0.70\pm 0.05\ M_{\odot}$) and determine the mass function of the invisible object $f(M)=0.525 \pm 0.004\ M_{\odot}$, i.e., the mass of the unseen compact object is $M_{\rm inv} \geq 1.26 \pm 0.03M_{\odot}$. The excess UV emission due to a hot supramassive white dwarf is absent. Hence, it is likely that J2354 harbors a neutron star. J2354 is X-ray dim (the $0.1$--$2.4$ keV luminosity $<10^{30}\ {\rm erg\ s^{-1}}$) since it is not detected in the ROSAT all-sky surveys in X-ray. One-hour exceptionally sensitive radio follow-up observations with FAST, the largest single-dish radio telescope, failed to reveal any radio pulsating signals (the potential pulse power at $1.4$ GHz is $<6.8\times 10^{23}\ {\rm erg\ s^{-1}}$). Hence, the neutron star candidate in J2354 can only be discovered via our time-resolved observations. The alternative scenario involving a nearby supramassive cold white dwarf cannot be fully excluded. Our discovery demonstrates a promising way to unveil the missing population of backyard inactive neutron stars or supramassive cold white dwarfs in binaries by exploring the optical time domain, thereby facilitating understanding of the supernovae explosion and metal-enrichment history in our Solar neighborhood.

  • A long-period pre-ELM system discovered from LAMOST medium-resolution survey

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present LAMOST~J041920.07+072545.4 (hereafter J0419), a close binary consisting of a bloated extremely low mass pre-white dwarf (pre-ELM WD) and a compact object with an orbital period of 0.607189~days. The large-amplitude ellipsoidal variations and the evident Balmer and He~I emission lines suggest a filled Roche lobe and ongoing mass transfer. No outburst events were detected in the 15 years of monitoring of J0419, indicating a very low mass transfer rate. The temperature of the pre-ELM, $T_\mathrm{eff} = 5793_{-133}^{+124}\,\rm K$, is cooler than the known ELMs, but hotter than most CV donors. Combining the mean density within the Roche lobe and the radius constrained from our SED fitting, we obtain the mass of the pre-ELM, $M_1 = 0.176\pm 0.014\,M_\odot$. The joint fitting of light and radial velocity curves yields an inclination angle of $i = 66.5_{-1.7}^{+1.4}$ degrees, corresponding to the compact object mass of $M_2 = 1.09\pm 0.05\,M_\odot$. The very bloated pre-ELM has a smaller surface gravity ($\log g = 3.9\pm 0.01$, $R_1 = 0.78 \pm 0.02\,R_\odot$) than the known ELMs or pre-ELMs. The temperature and the luminosity ($L_\mathrm{bol} = 0.62_{-0.10}^{+0.11}\,L_\odot$) of J0419 are close to the main sequence, which makes the selection of such systems through the HR diagram inefficient. Based on the evolutionary model, the relatively long period and small $\log g$ indicate that J0419 could be close to the "bifurcation period" in the orbit evolution, which makes J0419 to be a unique source to connect ELM/pre-ELM WD systems, wide binaries and cataclysmic variables.

  • J-PLUS: Support Vector Regression to Measure Stellar Parameters

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Context. Stellar parameters are among the most important characteristics in studies of stars, which are based on atmosphere models in traditional methods. However, time cost and brightness limits restrain the efficiency of spectral observations. The J-PLUS is an observational campaign that aims to obtain photometry in 12 bands. Owing to its characteristics, J-PLUS data have become a valuable resource for studies of stars. Machine learning provides powerful tools to efficiently analyse large data sets, such as the one from J-PLUS, and enable us to expand the research domain to stellar parameters. Aims. The main goal of this study is to construct a SVR algorithm to estimate stellar parameters of the stars in the first data release of the J-PLUS observational campaign. Methods. The training data for the parameters regressions is featured with 12-waveband photometry from J-PLUS, and is cross-identified with spectrum-based catalogs. These catalogs are from the LAMOST, the APOGEE, and the SEGUE. We then label them with the stellar effective temperature, the surface gravity and the metallicity. Ten percent of the sample is held out to apply a blind test. We develop a new method, a multi-model approach in order to fully take into account the uncertainties of both the magnitudes and stellar parameters. The method utilizes more than two hundred models to apply the uncertainty analysis. Results. We present a catalog of 2,493,424 stars with the Root Mean Square Error of 160K in the effective temperature regression, 0.35 in the surface gravity regression and 0.25 in the metallicity regression. We also discuss the advantages of this multi-model approach and compare it to other machine-learning methods.

  • LTD064402+245919: A Subgiant with a 1-3 M$_{\odot}$ Undetected Companion Identified from LAMOST-TD Data

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Single-line spectroscopic binaries recently contribute to the stellar-mass black hole discovery, independently of the X-ray transient method. We report the identification of a single-line binary system LTD064402+245919, with an orbital period of 14.50 days. The observed component is a subgiant with a mass of 2.77$\pm$0.68M$_{\odot}$, radius 15.5$\pm$2.5R$_{\odot}$, effective temperature $T_{\rm eff}$ 4500$\pm$200K, and surface gravity log\emph{g} 2.5$\pm$0.25dex. The discovery makes use of the LAMOST time-domain (LAMOST-TD) and ZTF survey. Our general-purpose software pipeline applies the Lomb-Scargle periodogram to determine the orbital period and uses machine-learning to classify the variable type from the folded light curves. We apply a combined model to estimate the orbital parameters from both the light and radial velocity curves, taking constraints on the primary star mass, mass function, and detection limit of secondary luminosity into consideration. We obtain a radial velocity semi-amplitude of 44.6$\pm$1.5 km s$^{-1}$, mass ratio of 0.73$\pm$0.07, and an undetected component mass of 2.02$\pm$0.49M$_{\odot}$ when the type of the undetected component is not set. We conclude that the inclination is not well constrained, and that the secondary mass is larger than 1M$_{\odot}$ when the undetected component is modelled as a compact object. According to our investigations using an MCMC simulation, increasing the spectra SNR by a factor of 3 would enable the secondary light to be distinguished (if present). The algorithm and software in this work are able to serve as general-purpose tools for the identification of compact objects quiescent in X-rays.

  • A White Dwarf-Main Sequence Binary Unveiled by Time-Domain Observations from LAMOST and TESS

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We report a single-lined white dwarf-main sequence binary system, LAMOST J172900.17+652952.8, which is discovered by LAMOST's medium resolution time-domain surveys. The radial velocity semi-amplitude and orbital period of the optical visible star are measured by using the Palomar 200-inch telescope follow-up observations and the light curves from TESS. Thus the mass function of the invisible candidate white dwarf is derived, $f(M_{\rm{2}}) = 0.120\,\pm\,0.003\,M_{\odot}$. The mass of the visible star is measured based on the spectral energy distribution fitting, $M_{\mathrm{1}}$ = $0.81^{+0.07}_{-0.06}\,M_{\odot}$. Hence, the mass of its invisible companion is $M_{\rm{2}}\,\gtrsim\,0.63\,M_{\odot}$. The companion ought to be a compact object rather than a main-sequence star owing to the mass ratio $q = M_{\rm{2}} / M_{\rm 1} \gtrsim 0.78$ and the single-lined spectra. The compact object is likely to be a white dwarf except for small inclination angle, $i\,\lesssim\,40^{\circ}$. By using the GALEX NUV flux, the effective temperature of the white dwarf candidate is constrained as $T_{\rm eff}^{\rm WD}\,\lesssim\,12000-13500$ K. It is difficult to detect white dwarfs which are outshone by their bright companions via single-epoch optical spectroscopic surveys. Therefore, the optical time-domain surveys can play an important role in unveiling invisible white dwarfs and other compact objects in binaries.

  • A White Dwarf-Main Sequence Binary Unveiled by Time-Domain Observations from LAMOST and TESS

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We report a single-lined white dwarf-main sequence binary system, LAMOST J172900.17+652952.8, which is discovered by LAMOST's medium resolution time-domain surveys. The radial velocity semi-amplitude and orbital period of the optical visible star are measured by using the Palomar 200-inch telescope follow-up observations and the light curves from TESS. Thus the mass function of the invisible candidate white dwarf is derived, $f(M_{\rm{2}}) = 0.120\,\pm\,0.003\,M_{\odot}$. The mass of the visible star is measured based on the spectral energy distribution fitting, $M_{\mathrm{1}}$ = $0.81^{+0.07}_{-0.06}\,M_{\odot}$. Hence, the mass of its invisible companion is $M_{\rm{2}}\,\gtrsim\,0.63\,M_{\odot}$. The companion ought to be a compact object rather than a main-sequence star owing to the mass ratio $q = M_{\rm{2}} / M_{\rm 1} \gtrsim 0.78$ and the single-lined spectra. The compact object is likely to be a white dwarf except for small inclination angle, $i\,\lesssim\,40^{\circ}$. By using the GALEX NUV flux, the effective temperature of the white dwarf candidate is constrained as $T_{\rm eff}^{\rm WD}\,\lesssim\,12000-13500$ K. It is difficult to detect white dwarfs which are outshone by their bright companions via single-epoch optical spectroscopic surveys. Therefore, the optical time-domain surveys can play an important role in unveiling invisible white dwarfs and other compact objects in binaries.

  • Detecting and Monitoring Tidal Dissipation of Hot Jupiters in the Era of SiTian

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Transit Timing Variation (TTV) of hot Jupiters provides direct observational evidence of planet tidal dissipation. Detecting tidal dissipation through TTV needs high precision transit timings and long timing baselines. In this work, we predict and discuss the potential scientific contribution of SiTian Survey in detecting and analyzing exoplanet TTV. We develop a tidal dissipation detection pipeline for SiTian Survey that aims at time-domain astronomy with 72 1-meter optical telescopes. The pipeline includes the modules of light curve deblending, transit timing obtaining, and TTV modeling. SiTian is capable to detect more than 25,000 exoplanets among which we expect $\sim$50 sources showing evidence of tidal dissipation. We present detection and analysis of tidal dissipating targets, based on simulated SiTian light curves of XO-3b and WASP-161b. The transit light curve modeling gives consistent results within 1$\sigma$ to input values of simulated light curves. Also, the parameter uncertainties predicted by Monte-Carlo Markov Chain are consistent with the distribution obtained from simulating and modeling the light curve 1000 times. The timing precision of SiTian observations is $\sim$ 0.5 minutes with one transit visit. We show that differences between TTV origins, e.g., tidal dissipation, apsidal precession, multiple planets, would be significant, considering the timing precision and baseline. The detection rate of tidal dissipating hot Jupiters would answer a crucial question of whether the planet migrates at an early formation stage or random stages due to perturbations, e.g., planet scattering, secular interaction. SiTian identified targets would be constructive given that the sample would extend tenfold.

  • A dynamically discovered and characterized non-accreting neutron star -- M dwarf binary candidate

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Optical time-domain surveys can unveil and characterize exciting but less-explored non-accreting and/or non-beaming neutron stars (NS) in binaries. Here we report the discovery of such a NS candidate using the LAMOST spectroscopic survey. The candidate, designated LAMOST J112306.9+400736 (hereafter J1123), is in a single-lined spectroscopic binary containing an optically visible M star. The star's large radial velocity variation and ellipsoidal variations indicate a relatively massive unseen companion. Utilizing follow-up spectroscopy from the Palomar 200-inch telescope and high-precision photometry from TESS, we measure a companion mass of $1.24_{-0.03}^{+0.03}~M_{\odot}$. Main-sequence stars with this mass are ruled out, leaving a NS or a massive white dwarf (WD). Although a massive WD cannot be ruled out, the lack of UV excess radiation from the companion supports the NS hypothesis. Deep radio observations with FAST yielded no detections of either pulsed or persistent emission. J1123 is not detected in numerous X-ray and gamma-ray surveys. These non-detections suggest that the NS candidate is not presently accreting and pulsing. Our work exemplifies the capability of discovering compact objects in non-accreting close binaries by synergizing the optical time-domain spectroscopy and high-cadence photometry.

  • Stellar chromospheric activities revealed from the LAMOST-K2 time-domain survey

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: By using the LAMOST time-domain survey data, we study stellar activities based on the $\rm{H_{\alpha}}$ lines for about 2000 stars in four $K$2 plates. Two indices, $R_{\rm{H\alpha}}^{'}$ and $R_{\rm{H\alpha}}^{+}$, are computed from LAMOST spectra, the former of which is derived by excluding the photospheric contributions to the $\rm{H_{\alpha}}$ lines, while the latter is derived by further subtracting the non-dynamo driven chromospheric emission. Meanwhile, the periodicity and variation amplitudes are computed from \emph{K2} light curves. Both the $R_{\rm{H\alpha}}^{'}$-Ro relation and $R_{\rm{H\alpha}}^{+}$-Ro relation show complicated profiles in the non-saturated decay region. Hot stars show flatter slopes and higher activity level than cool stars, and the behaviour is more notable in the $R_{\rm{H\alpha}}^{+}$-$R_{o}$ relation. This is consistent with recent studies using other activity proxies, including $L_{\rm{x}}/L_{\rm{bol}}$, $R_{\rm{HK}}^{'}$ and amplitudes of optical light curves. % This may suggest different kinds of stars follow different power laws in the decay region. Most of our targets have multiple observations, and some of them exhibit significant variability of ${\rm{H\alpha}}$ emissions, which may cause the large scatters shown in the decay region. We find three targets exhibiting positive correlation in rotational phase, possibly indicating that their optical light curves are dominated by hot faculae rather than cool starspots.