• Potentially Km-G-graphical Sequences: A Survey

    分类: 数学 >> 离散数学和组合数学 提交时间: 2024-03-27

    摘要: The set of all non-increasing nonnegative integers sequence π = (d(v1), d(v2), ..., d(vn)) is denoted by NSn. A sequence π ∈ NSn is said to be graphic if it is the degree sequence of a simple graph G on n vertices, and such a graph G is called a realization of π. The set of all graphic sequences in NSn is denoted by GSn. A graphical sequence π is potentially H-graphical if there is a realization of π containing H as a subgraph, while π is forcibly H-graphical if every realization of π contains H as a subgraph. Let Kk denote a complete graph on k vertices. Let Km −H be the graph obtained from Km by removing the edges set E(H) of the graph H (H is a subgraph of Km). This paper summarizes briefly some recent results on potentially Km −G-graphic sequences and give a useful classification for determining σ(H, n).

  • An Extremal Problem On Potentially $K_{r+1}-H$-graphic Sequences

    分类: 数学 >> 离散数学和组合数学 提交时间: 2024-02-13

    摘要: Let $K_k$, $C_k$, $T_k$, and $P_{k}$ denote a complete graph on $k$ vertices, a cycle on $k$ vertices, a tree on $k+1$ vertices, and a path on $k+1$ vertices, respectively. Let $K_{m}-H$ be the graph obtained from $K_{m}$ by removing the edges set $E(H)$ of the graph $H$ ($H$ is a subgraph of $K_{m}$). A sequence $S$ is potentially $K_{m}-H$-graphical if it has a realization containing a $K_{m}-H$ as a subgraph. Let $\sigma(K_{m}-H, n)$ denote the smallest degree sum such that every $n$-term graphical sequence $S$ with $\sigma(S)\geq \sigma(K_{m}-H, n)$ is potentially $K_{m}-H$-graphical. In this paper, we determine the values of $\sigma (K_{r+1}-H, n)$ for $n\geq 4r+10, r\geq 3, r+1 \geq k \geq 4$ where $H$ is a graph on $k$ vertices which contains a tree on $4$ vertices but not contains a cycle on $3$ vertices. We also determine the values of $\sigma (K_{r+1}-P_2, n)$ for $n\geq 4r+8, r\geq 3$.

  • The smallest degree sum that yields potentially $K_{r+1}-Z$-graphical Sequences

    分类: 数学 >> 离散数学和组合数学 提交时间: 2024-02-13

    摘要: Let $K_{m}-H$ be the graph obtained from $K_{m}$ by removing the edges set $E(H)$ of the graph $H$ ($H$ is a subgraph of $K_{m}$). We use the symbol $Z_4$ to denote $K_4-P_2.$ A sequence $S$ is potentially $K_{m}-H$-graphical if it has a realization containing a $K_{m}-H$ as a subgraph. Let $\sigma(K_{m}-H, n)$ denote the smallest degree sum such that every $n$-term graphical sequence $S$ with $\sigma(S)\geq \sigma(K_{m}-H, n)$ is potentially $K_{m}-H$-graphical. In this paper, we determine the values of $\sigma (K_{r+1}-Z, n)$ for $n\geq 5r+19, r+1 \geq k \geq 5,$ $j \geq 5$ where $Z$ is a graph on $k$ vertices and $j$ edges which contains a graph $Z_4$ but not contains a cycle on $4$ vertices. We also determine the values of $\sigma (K_{r+1}-Z_4, n)$, $\sigma (K_{r+1}-(K_4-e), n)$, $\sigma (K_{r+1}-K_4, n)$ for $n\geq 5r+16, r\geq 4$.

  • On potentially $K_{r+1}-U$-graphical Sequences

    分类: 数学 >> 离散数学和组合数学 提交时间: 2024-02-18

    摘要: Let $K_{m}-H$ be the graph obtained from $K_{m}$ by removing the edges set $E(H)$ of the graph $H$ ($H$ is a subgraph of $K_{m}$). We use the symbol $Z_4$ to denote $K_4-P_2.$ A sequence $S$ is potentially $K_{m}-H$-graphical if it has a realization containing a $K_{m}-H$ as a subgraph. Let $\sigma(K_{m}-H, n)$ denote the smallest degree sum such that every $n$-term graphical sequence $S$ with $\sigma(S)\geq \sigma(K_{m}-H, n)$ is potentially $K_{m}-H$-graphical. In this paper, we determine the values of $\sigma (K_{r+1}-U, n)$ for $n\geq 5r+18, r+1 \geq k \geq 7,$ $j \geq 6$ where $U$ is a graph on $k$ vertices and $j$ edges which contains a graph $K_3 \bigcup P_3$ but not contains a cycle on 4 vertices and not contains $Z_4$. There are a number of graphs on $k$ vertices and $j$ edges which contains a graph $(K_{3} \bigcup P_{3})$ but not contains a cycle on 4 vertices and not contains $Z_4$. (for example, $C_3\bigcup C_{i_1} \bigcup C_{i_2} \bigcup >... \bigcup C_{i_p}$ $(i_j\neq 4, j=2,3,..., p, i_1 \geq 5)$, $C_3\bigcup P_{i_1} \bigcup P_{i_2} \bigcup ... \bigcup P_{i_p}$ $(i_1 \geq 3)$, $C_3\bigcup P_{i_1} \bigcup C_{i_2} \bigcup >... \bigcup C_{i_p}$ $(i_j\neq 4, j=2,3,..., p, i_1 \geq 3)$, etc)