• Decayless oscillations in solar coronal bright points

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Decayless kink oscillations of solar coronal loops (or decayless oscillations for short) have attracted great attention since their discovery. Coronal bright points (CBPs) are mini-active regions and consist of loops with a small size. However, decayless oscillations in CBPs have not been widely reported. In this study, we identified this kind of oscillations in some CBPs using 171 \AA\, images taken by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). After using the motion magnification algorithm to increase oscillation amplitudes, we made time-distance maps to identify the oscillatory signals. We also estimated the loop lengths and velocity amplitudes. We analysed 23 CBPs, and found 31 oscillation events in 16 of them. The oscillation periods range from 1 to 8 minutes (on average about 5 minutes), and the displacement amplitudes have an average value of 0.07 Mm. The average loop length and velocity amplitude are 23 Mm and 1.57 \kms, respectively. Relationships between different oscillation paraments are also examined. Additionally, we performed a simple forward model to illustrate how these sub-pixel oscillation amplitudes (less than 0.4 Mm) could be detected. Results of the model confirm the reliability of our data processing methods. Our study shows for the first time that decayless oscillations are common in small-scale loops of CBPs. These oscillations allow for seismological diagnostics of the Alfv\'{e}n speed and magnetic field strength in the corona.

  • Sun-as-a-star spectroscopic observations of the line-of-sight velocity of a solar eruption on October 28, 2021

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The propagation direction and true velocity of a solar coronal mass ejection, which are among the most decisive factors for its geo-effectiveness, are difficult to determine through single-perspective imaging observations. Here we show that Sun-as-a-star spectroscopic observations, together with imaging observations, could allow us to solve this problem. Using observations of the Extreme-ultraviolet Variability Experiment onboard the Solar Dynamics Observatory, we found clear blue-shifted secondary emission components in extreme ultraviolet spectral lines during a solar eruption on October 28, 2021. From simultaneous imaging observations, we found that the secondary components are caused by a mass ejection from the flare site. We estimated the line-of-sight (LOS) velocity of the ejecta from both the double Gaussian fitting method and the red-blue asymmetry analysis. The results of both methods agree well with each other, giving an average LOS velocity of the plasma of $\sim 423~\rm{km~s^{-1}}$. From the $304$ \AA~image series taken by the Extreme Ultraviolet Imager onboard the Solar Terrestrial Relation Observatory-A (STEREO-A) spacecraft, we estimated the plane-of-sky (POS) velocity from the STEREO-A viewpoint {to be around $587~\rm{km~s^{-1}}$}. The full velocity of the bulk motion of the ejecta was then computed by combining the imaging and spectroscopic observations, which turns out to be around $596~\rm{km~s^{-1}}$ with an angle of $42.4^\circ$ to the west of the Sun-Earth line and $16.0^\circ$ south to the ecliptic plane.

  • Possible Signature of Sausage Waves in Photospheric Bright Points

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Sausage waves have been frequently reported in solar magnetic structures such as sunspots, pores, and coronal loops. However, they have not been unambiguously identified in photospheric bright points (BPs). Using high-resolution TiO image sequences obtained with the Goode Solar Telescope at the Big Bear Solar Observatory, we analyzed four isolated BPs. It was found that their area and average intensity oscillate for several cycles in an in-phase fashion. The oscillation periods range from 100 to 200 seconds. We interpreted the phase relation as a signature of sausage waves, particularly slow waves, after discussing sausage-wave theory and the opacity effect.

  • Can we detect coronal mass ejections through asymmetries of Sun-as-a-star extreme-ultraviolet spectral line profiles?

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Coronal mass ejections (CMEs) are the largest-scale eruptive phenomena in the solar system. Associated with enormous plasma ejections and energy release, CMEs have an important impact on the solar-terrestrial environment. Accurate predictions of the arrival times of CMEs at the Earth depend on the precise measurements on their three-dimensional velocities, which can be achieved using simultaneous line-of-sight (LOS) and plane-of-sky (POS) observations. Besides the POS information from routine coronagraph and extreme ultraviolet (EUV) imaging observations, spectroscopic observations could unveil the physical properties of CMEs including their LOS velocities. We propose that spectral line asymmetries measured by Sun-as-a-star spectrographs can be used for routine detections of CMEs and estimations of their LOS velocities during their early propagation phases. Such observations can also provide important clues for the detection of CMEs on other solar-like stars. However, few studies have concentrated on whether we can detect CME signals and accurately diagnose CME properties through Sun-as-a-star spectral observations. In this work, we constructed a geometric CME model and derived the analytical expressions for full-disk integrated EUV line profiles during CMEs. For different CME properties and instrumental configurations, full disk-integrated line profiles were synthesized. We further evaluated the detectability and diagnostic potential of CMEs from the synthetic line profiles. Our investigations provide important constraints on the future design of Sun-as-a-star spectrographs for CME detections through EUV line asymmetries.

  • Coronal microjets in quiet-Sun regions observed with the Extreme Ultraviolet Imager onboard Solar Orbiter

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We report the smallest coronal jets ever observed in the quiet Sun with recent high resolution observations from the High Resolution Telescopes (HRI-EUV and HRI-Ly{\alpha}) of the Extreme Ultraviolet Imager (EUI) onboard Solar Orbiter. In the HRI-EUV (174 {\AA}) images, these microjets usually appear as nearly collimated structures with brightenings at their footpoints. Their average lifetime, projected speed, width, and maximum length are 4.6 min, 62 km s^(-1), 1.0 Mm, and 7.7 Mm, respectively. Inverted-Y shaped structures and moving blobs can be identified in some events. A subset of these events also reveal signatures in the HRI-Ly{\alpha} (H I Ly{\alpha} at 1216 {\AA}) images and the extreme ultraviolet images taken by the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory. Our differential emission measure analysis suggests a multi-thermal nature and an average density of ~1.4x10^9 cm^(-3) for these microjets. Their thermal and kinetic energies were estimated to be ~3.9x10^24 erg and ~2.9x10^23 erg, respectively, which are of the same order of the released energy predicted by the nanoflare theory. Most events appear to be located at the edges of network lanes and magnetic flux concentrations, suggesting that these coronal microjets are likely generated by magnetic reconnection between small-scale magnetic loops and the adjacent network field.