按提交时间
按主题分类
按作者
按机构
  • High-resolution Solar Image Reconstruction Based on Non-rigid Alignment

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Suppressing the interference of atmospheric turbulence and obtaining observation data with a high spatial resolution is an issue to be solved urgently for ground observations. One way to solve this problem is to perform a statistical reconstruction of short-exposure speckle images. Combining the rapidity of Shift-Add and the accuracy of speckle masking, this paper proposes a novel reconstruction algorithm-NASIR (Non-rigid Alignment based Solar Image Reconstruction). NASIR reconstructs the phase of the object image at each frequency by building a computational model between geometric distortion and intensity distribution and reconstructs the modulus of the object image on the aligned speckle images by speckle interferometry. We analyzed the performance of NASIR by using the correlation coefficient, power spectrum, and coefficient of variation of intensity profile (CVoIP) in processing data obtained by the NVST (1m New Vacuum Solar Telescope). The reconstruction experiments and analysis results show that the quality of images reconstructed by NASIR is close to speckle masking when the seeing is good, while NASIR has excellent robustness when the seeing condition becomes worse. Furthermore, NASIR reconstructs the entire field of view in parallel in one go, without phase recursion and block-by-block reconstruction, so its computation time is less than half that of speckle masking. Therefore, we consider NASIR is a robust and high-quality fast reconstruction method that can serve as an effective tool for data filtering and quick look.

  • Solar image reconstruction method under atmospheric turbulence at Fuxian Lake Solar Observatory

    分类: 天文学 >> 天文仪器与技术 提交时间: 2024-04-18 合作期刊: 《天文技术与仪器(英文)》

    摘要:Strong atmospheric turbulence reduces astronomical seeing, causing speckle images acquired by groundbased solar telescopes to become blurred and distorted. Severe distortion in speckle images impedes image phase deviation in the speckle masking reconstruction method, leading to the appearance of spurious imaging artifacts. Relying only on linear image degradation principles to reconstruct solar images is insufficient. To solve this problem, we propose the multiframe blind deconvolution combined with non-rigid alignment (MFBD-CNRA) method for solar image reconstruction. We consider image distortion caused by atmospheric turbulence and use non-rigid alignment to correct pixel-level distortion, thereby achieving nonlinear constraints to complement image intensity changes. After creating the corrected speckle image, we use the linear method to solve the wavefront phase, obtaining the target image. We verify the effectiveness of our method results, compared with others, using solar observation data from the 1 m new vacuum solar telescope (NVST). This new method successfully reconstructs high-resolution images of solar observations with a Fried parameter r0 of approximately 10 cm, and enhances images at high frequency. When r0 is approximately 5 cm, the new method is even more effective. It reconstructs the edges of solar graining and sunspots, and is greatly enhanced at mid and high frequency compared with other methods. Comparisons confirm the effectiveness of this method, with respect to both nonlinear and linear constraints in solar image reconstruction. This provides a suitable solution for image reconstruction in ground-based solar observations under strong atmospheric turbulence.

  • The statistical properties of early-type stars from LAMOST DR8

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Massive binary stars play a crucial role in many astrophysical fields. Investigating the statistical properties of massive binary stars is essential to trace the formation of massive stars and constrain the evolution of stellar populations. However, no consensus has been achieved on the statistical properties of massive binary stars, mainly due to the lack of a large and homogeneous sample of spectroscopic observations. We study the intrinsic binary fraction $f_{\rm b}^{\rm in}$ and distributions of mass ratio $f(q)$ and orbital period $f(P)$ of early-type stars (comprised of O-, B-, and A-type stars) and investigate their dependences on effective temperature $T_{\rm eff}$, stellar metallicity [M/H], and the projection velocity $v\sin{i}$, based on the homogeneous spectroscopic sample from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Data Release Eight (DR8). We found that $f_{\rm b}^{\rm in}$ increases with increasing $T_\mathrm{eff}$. The binary fraction is positively correlated with metallicity for spectra in the sample. Over all the $v\sin{i}$ values we considered, the $f_{\rm b}^{\rm in}$ have constant values of $\sim$50\%. It seems that the binary population is relatively evenly distributed over a wide range of $v\sin{i}$ values, while the whole sample shows that most of the stars are concentrated at low values of $v\sin{i}$ (probably from strong wind and magnetic braking of single massive stars) and at high values of $v\sin{i}$ (likely from the merging of binary stars). Stellar evolution and binary interaction may be partly responsible for this.There are no correlations found between $\pi$($\gamma$) and $T_{\rm eff}$, nor for $\pi$($\gamma$) and [M/H]. The uncertainties of the distribution decrease toward a larger sample size with higher observational cadence.

  • The statistical properties of early-type stars from LAMOST DR8

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Massive binary stars play a crucial role in many astrophysical fields. Investigating the statistical properties of massive binary stars is essential to trace the formation of massive stars and constrain the evolution of stellar populations. However, no consensus has been achieved on the statistical properties of massive binary stars, mainly due to the lack of a large and homogeneous sample of spectroscopic observations. We study the intrinsic binary fraction $f_{\rm b}^{\rm in}$ and distributions of mass ratio $f(q)$ and orbital period $f(P)$ of early-type stars (comprised of O-, B-, and A-type stars) and investigate their dependences on effective temperature $T_{\rm eff}$, stellar metallicity [M/H], and the projection velocity $v\sin{i}$, based on the homogeneous spectroscopic sample from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Data Release Eight (DR8). We found that $f_{\rm b}^{\rm in}$ increases with increasing $T_\mathrm{eff}$. The binary fraction is positively correlated with metallicity for spectra in the sample. Over all the $v\sin{i}$ values we considered, the $f_{\rm b}^{\rm in}$ have constant values of $\sim$50\%. It seems that the binary population is relatively evenly distributed over a wide range of $v\sin{i}$ values, while the whole sample shows that most of the stars are concentrated at low values of $v\sin{i}$ (probably from strong wind and magnetic braking of single massive stars) and at high values of $v\sin{i}$ (likely from the merging of binary stars). Stellar evolution and binary interaction may be partly responsible for this.There are no correlations found between $\pi$($\gamma$) and $T_{\rm eff}$, nor for $\pi$($\gamma$) and [M/H]. The uncertainties of the distribution decrease toward a larger sample size with higher observational cadence.

  • Solar Observation with the Fourier Transform Spectrometer. II. Preliminary Results of Solar Spectrum near the CO 4.66 μm and Mg i 12.32 μm

    分类: 物理学 >> 地球物理学、天文学和天体物理学 提交时间: 2024-01-09 合作期刊: 《Research in Astronomy and Astrophysics》

    摘要: An infrared solar spectrum observed by ground-based telescopes is seriously affected by the background radiation both from the telescope and sky, relative to the visible wavelengths. Its accuracy is also influenced by the spectral resolution of the Fourier transform spectrometer. In the paper, we developed a CO2 gas cell and installed it in the sample compartment to calibrate the spectral resolution of the Bruker IFS-125HR at infrared wavelengths. The measured spectral resolution is 0.00342 ± 0.00086 cm−1 and 0.0059 ± 0.00024 cm−1 at the wavenumbers of 798 cm−1and 2136 cm−1, respectively. We also updated a fully reflective sunlight feeding system to observe the solar spectrum near CO 4.66 μm and Mg i 12.32 μm. By quickly pointing the sunlight feeding system about 1 degree away from the solar disk center, we are able to measure the background radiation from the telescope and the sky at Huairou Solar Observing Station. After removing the background radiation, our observed solar spectrum at CO 4.66 μm is consistent with that from the National Solar Observatory. The Mg i 12.32 μm working line selected by the Accurate Infrared Magnetic Field Measurements of the Sun (AIMS) project is also identified. Our method is helpful not only for the spectral resolution calibration and background radiation correction of AIMS but also for other infrared astronomical telescopes.

  • A Roche Lobe-filling hot Subdwarf and White Dwarf Binary: possible detection of an ejected common envelope

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Binaries consisting of a hot subdwarf star and an accreting white dwarf (WD) are sources of gravitational wave radiation at low frequencies and possible progenitors of type Ia supernovae if the WD mass is large enough. Here, we report the discovery of the third binary known of this kind: it consists of a hot subdwarf O (sdO) star and a WD with an orbital period of 3.495 hours and an orbital shrinkage of 0.1 s in 6 yr. The sdO star overfills its Roche lobe and likely transfers mass to the WD via an accretion disk. From spectroscopy, we obtain an effective temperature of $T_{\mathrm{eff}}=54\,240\pm1\,840$ K and a surface gravity of $\log{g}=4.841\pm0.108$ for the sdO star. From the light curve analysis, we obtain a sdO mass of $M_{\mathrm{sdO}}=0.55$ ${\mathrm{M_{\odot}}}$ and a mass ratio of $q=M_{\mathrm{WD}}/M_{\mathrm{sdO}}=0.738\pm0.001$. Also, we estimate that the disk has a radius of $\sim 0.41R_\odot$ and a thickness of $\sim 0.18R_\odot$. The origin of this binary is probably a common envelope ejection channel, where the progenitor of the sdO star is either an RGB star or, more likely, an early AGB star; the sdO star will subsequently evolve into a WD and merge with its WD companion, likely resulting in an R CrB star. The outstanding feature in the spectrum of this object is strong Ca H&K lines, which are blueshifted by $\sim$200 km/s and likely originate from the recently ejected common envelope, and we estimated that the remnant CE material in the binary system has a density $\sim 6\times 10^{-10} {\rm g/cm^3}$.

  • The Solar Upper Transition Region Imager (SUTRI) onboard the SATech-01 satellite

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Solar Upper Transition Region Imager (SUTRI) onboard the Space Advanced Technology demonstration satellite (SATech-01), which was launched to a sun-synchronous orbit at a height of 500 km in July 2022, aims to test the on-orbit performance of our newly developed Sc-Si multi-layer reflecting mirror and the 2kx2k EUV CMOS imaging camera and to take full-disk solar images at the Ne VII 46.5 nm spectral line with a filter width of 3 nm. SUTRI employs a Ritchey-Chretien optical system with an aperture of 18 cm. The on-orbit observations show that SUTRI images have a field of view of 41.6'x41.6' and a moderate spatial resolution of 8" without an image stabilization system. The normal cadence of SUTRI images is 30 s and the solar observation time is about 16 hours each day because the earth eclipse time accounts for about 1/3 of SATech-01's orbit period. Approximately 15 GB data is acquired each day and made available online after processing. SUTRI images are valuable as the Ne VII 46.5 nm line is formed at a temperature regime of 0.5 MK in the solar atmosphere, which has rarely been sampled by existing solar imagers. SUTRI observations will establish connections between structures in the lower solar atmosphere and corona, and advance our understanding of various types of solar activity such as flares, filament eruptions, coronal jets and coronal mass ejections.

  • The Solar Upper Transition Region Imager (SUTRI) onboard the SATech-01 satellite

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Solar Upper Transition Region Imager (SUTRI) onboard the Space Advanced Technology demonstration satellite (SATech-01), which was launched to a sun-synchronous orbit at a height of 500 km in July 2022, aims to test the on-orbit performance of our newly developed Sc-Si multi-layer reflecting mirror and the 2kx2k EUV CMOS imaging camera and to take full-disk solar images at the Ne VII 46.5 nm spectral line with a filter width of 3 nm. SUTRI employs a Ritchey-Chretien optical system with an aperture of 18 cm. The on-orbit observations show that SUTRI images have a field of view of 41.6'x41.6' and a moderate spatial resolution of 8" without an image stabilization system. The normal cadence of SUTRI images is 30 s and the solar observation time is about 16 hours each day because the earth eclipse time accounts for about 1/3 of SATech-01's orbit period. Approximately 15 GB data is acquired each day and made available online after processing. SUTRI images are valuable as the Ne VII 46.5 nm line is formed at a temperature regime of 0.5 MK in the solar atmosphere, which has rarely been sampled by existing solar imagers. SUTRI observations will establish connections between structures in the lower solar atmosphere and corona, and advance our understanding of various types of solar activity such as flares, filament eruptions, coronal jets and coronal mass ejections.