按提交时间
按主题分类
按作者
按机构
  • Grazing exclusion-induced shifts, the relative importance of environmental filtering, biotic interactions and dispersal limitation in shaping desert steppe communities, northern China

    分类: 物理学 >> 普通物理:统计和量子力学,量子信息等 提交时间: 2018-04-24 合作期刊: 《干旱区科学》

    摘要: Grazing exclusion is one of the most efficient approaches to restore degraded grassland but may negatively affects the recovery of species diversity. Changes in plant species diversity should be a consequence of the ecological assembly process. Local community assembly is influenced by environmental filtering, biotic interactions, and dispersal. However, how these factors potentially contribute to changes to species diversity is poorly understood, especially in harsh environments. In this study, two management sites within a Stipa breviflora desert steppe community (typical natural steppe) were selected in northern China. In one of the two management sites, grazing has been excluded since 2010 and in the other with open grazing by sheep. In August 2016, three plots were established and 100 sampling units were created within each plot in a 5 m×5 m area at the two management sites. To assess the effects of grazing exclusion on S. breviflora steppe, we analyzed the vegetation biomass, species diversity, soil organic carbon, and soil particle size distribution using paired T-tests. In addition, variation partitioning was applied to determine the relative importance of environmental filtering and dispersal limitation. Null mode analysis was used to quantify the influence of biotic interactions in conjunction with EcoSim niche overlap and co-occurrence values. Our results demonstrated that (1) species diversity significantly decreased and the main improvements in soil quality occurred in the topsoil 0–10 cm after the grazing exclusion; (2) environmental filtering was important for community assembly between grazed and fenced grassland and this appears particularly true for soil particle size distribution, which may be well correlated with soil hydrological processes; and (3) however, competitive exclusion may play a significant role within the exclusion. The multiple pathways of assembly may collectively determine negative effects on the restoration of species diversity. Therefore, designers should be aware of the risk of reducing grazing exclusion-induced species diversity and account for manipulating processes. This in turn will reduce dominant species and promote environmental heterogeneity to maximize species diversity in semi-arid regions.

  • Topology-defined units in numerosity perception

    分类: 生物学 >> 生物物理学 提交时间: 2016-05-12

    摘要: What is a number? The number sense hypothesis suggests that numerosity is "a primary visual property" like color, contrast, or orientation. However, exactly what attribute of a stimulus is the primary visual property and determines numbers in the number sense? To verify the invariant nature of numerosity perception, we manipulated the numbers of items connected/enclosed in arbitrary and irregular forms while controlling for low-level features (e.g., orientation, color, and size). Subjects performed discrimination, estimation, and equality judgment tasks in a wide range of presentation durations and across small and large numbers. Results consistently show that connecting/enclosing items led to robust numerosity underestimation, with the extent of underestimation increasing monotonically with the number of connected/enclosed items. In contrast, grouping based on color similarity had no effect on numerosity judgment. We propose that numbers or the primitive units counted in numerosity perception are influenced by topological invariants, such as connectivity and the inside/outside relationship. Beyond the behavioral measures, neural tuning curves to numerosity in the intraparietal sulcus were obtained using functional MRI adaptation, and the tuning curves showed that numbers represented in the intraparietal sulcus were strongly influenced by topology.

  • Response of soil respiration to short-term changes in precipitation and nitrogen addition in a desert steppe

    分类: 生物学 >> 生态学 提交时间: 2023-10-17 合作期刊: 《干旱区科学》

    摘要: Changes in precipitation and nitrogen (N) addition may significantly affect the processes of soil carbon (C) cycle in terrestrial ecosystems, such as soil respiration. However, relatively few studies have investigated the effects of changes in precipitation and N addition on soil respiration in the upper soil layer in desert steppes. In this study, we conducted a control experiment that involved a field simulation from July 2020 to December 2021 in a desert steppe in Yanchi County, China. Specifically, we measured soil parameters including soil temperature, soil moisture, total nitrogen (TN), soil organic carbon (SOC), soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), and contents of soil microorganisms including bacteria, fungi, actinomyces, and protozoa, and determined the components of soil respiration including soil respiration with litter (RS+L), soil respiration without litter (RS), and litter respiration (RL) under short-term changes in precipitation (control, increased precipitation by 30%, and decreased precipitation by 30%) and N addition (0.0 and 10.0 g/(m2–a)) treatments. Our results indicated that short-term changes in precipitation and N addition had substantial positive effects on the contents of TN, SOC, and SMBC, as well as the contents of soil actinomyces and protozoa. In addition, N addition significantly enhanced the rates of RS+L and RS by 4.8% and 8.0% (P0.05). The mean RL/RS+L value observed under all treatments was 27.63%, which suggested that RL is an important component of soil respiration in the desert steppe ecosystems. The results also showed that short-term changes in precipitation and N addition had significant interactive effects on the rates of RS+L, RS, and RL (P

  • Efficient light-emitting diodes based on oriented perovskite nanoplatelets

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Solution-processed planar perovskite light-emitting diodes (LEDs) promise high-performance and cost-effective electroluminescent (EL) devices ideal for large-area display and lighting applications. Exploiting emission layers with high ratios of horizontal transition dipole moments (TDMs) is expected to boost photon outcoupling of planar LEDs. However, LEDs based on anisotropic perovskite nanoemitters remains to be inefficient (external quantum efficiency, EQE <5%), due to the difficulties of simultaneously controlling the orientations of TDMs, achieving high photoluminescence quantum yields (PLQYs) and realizing charge balance in the films of the assembled nanostructures. Here we demonstrate efficient EL from an in-situ grown continuous perovskite film comprising of a monolayer of face-on oriented nanoplatelets. The ratio of horizontal TDMs of the perovskite nanoplatelet films is ~84%, substantially higher than that of isotropic emitters (67%). The nanoplatelet film shows a high PLQY of ~75%. These merits enable LEDs with a peak EQE of 23.6%, representing the most efficient perovskite LEDs.

  • Processing of visually evoked innate fear by a non-canonical thalamic pathway

    分类: 生物学 >> 生物物理学 提交时间: 2016-05-12

    摘要: The ability of animals to respond to life-threatening stimuli is essential for survival. Although vision provides one of the major sensory inputs for detecting threats across animal species, the circuitry underlying defensive responses to visual stimuli remains poorly defined. Here, we investigate the circuitry underlying innate defensive behaviours elicited by predator-like visual stimuli in mice. Our results demonstrate that neurons in the superior colliculus (SC) are essential for a variety of acute and persistent defensive responses to overhead looming stimuli. Optogenetic mapping revealed that SC projections to the lateral posterior nucleus (LP) of the thalamus, a non-canonical polymodal sensory relay, are sufficient to mimic visually evoked fear responses. In vivo electrophysiology experiments identified a di-synaptic circuit from SC through LP to the lateral amygdale (Amg), and lesions of the Amg blocked the full range of visually evoked defensive responses. Our results reveal a novel collicular-thalamic-Amg circuit important for innate defensive responses to visual threats.