• Cryo-EM structures of adenosine receptor A3AR bound to selective agonists

    分类: 药物科学 >> 结构生物学 提交时间: 2024-04-17

    摘要: The adenosine A3 receptor (A3AR) belongs to a subfamily of G protein-coupled receptors and is an important therapeutic target for conditions including inflammation and cancer. The clinical compounds CF101 and CF102 are potent and selective A3AR agonists, but the structural basis of their recognition was unknown. Here we present the cryogenic electron microscopy structures of the full-length human A3AR bound to CF101 and CF102 at 3.3-3.2 Å resolution in complex with heterotrimeric Gi protein. These agonists bind within the orthosteric pocket, with their adenine components engaging in conserved interactions while their substituted 3-iodobenzyl groups exhibit different orientations. Swapping extracellular loop 3 (ECL3) of A3AR onto other adenosine receptor subtypes enabled CF101/CF102 binding and receptor activaton, and mutations in key residues, including His3.37, Ser5.42 and Ser6.52 that form a unique subpocket in A3AR, abolished receptor activation, highlighting these structural elements are critical for ligand selectivity. Compared to inactive A2AAR, the A3AR structures reveal conserved mechanism of receptor activation, including an outward shift of TM6. These structures provide key insights into molecular recognition and signaling mechanisms of A3AR, which should aid rational design of subtype-selective ligands targeting this important class of adenosine receptors. 

  • Reevaluating GPR30: A Paradigm Shift from Estrogen Receptor to Unique Hydrophilic Ligand Activation

    分类: 药物科学 >> 结构生物学 提交时间: 2024-02-24

    摘要: The orphan receptor GPR30, previously classified as a G protein-coupled estrogen receptor (GPER), has been a subject of debate regarding its ligand specificity. Through an integrative approach combining structure elucidation, biochemical binding, and cell signaling assays, we demonstrate that estrogen does not directly bind to or activate GPR30. Cryo-EM structures of GPR30 reveal an unexpected hydrophilic ligand-binding pocket, with striking differences from classical hydrophobic steroid-binding sites, inconsistent with estrogen binding. We further confirmed hydrophilic agonists like Lys05 as true activators of GPR30, providing structural insights into their binding mechanism and receptor activation. Our findings necessitate a paradigm shift in defining GPR30’s role in estrogen signaling, indicating that its activation occurs through mechanisms independent of estrogen binding. This study opens new avenues for developing targeted GPR30 ligands and reinterpreting its role in estrogen-mediated processes.