特高压主变压器随机地震响应敏感性分析

崔佳伟, 车爱兰
（上海交通大学船舶海洋与建筑工程学院，200040 上海）

摘 要：通过敏感性分析找出特高压变电站主变压器随机地震动响应影响较大的参数，能够为抗
震设计和后续的地震易损性分析提供借鉴和参考。本研究基于 SAP2000 对主变压器进行有限元模
型构建与地震响应计算，分别以互信息法和偏秩相关法对参数进行了敏感性分析。结果表明：两种
分析方法得到的参数敏感性排序相同，PGA 是对特高压主变压器随机地震响应影响最大的参数，高
压套管长度 H_l、高压套管密度 D_0、法兰截面等效刚度系数 F_l、本体重 B_w 和输入方向也具有一定
的影响，而其他的参数对于主变压器随机地震响应的影响较小。

关键词：主变压器；地震响应；敏感性分析；互信息法；偏秩相关法

中图分类号：U224.2 + 2 文献标志码：A DOI: 10.11776/j.issn.1000-4939.2023.02.019

Sensitivity analysis of random seismic response of main
transformer in substation

CUI Jiawei, CHE Ailan
（School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 200040 Shanghai, China）

Abstract: Through the sensitivity analysis, the parameters which have great influence on the random seis-
mic response of the main transformer are found, which can provide reference for seismic design and subse-
quent seismic vulnerability analysis. In this paper, based on SAP2000, the finite element model of the main
transformer is constructed and the seismic response is calculated. The sensitivity of the parameters is ana-
yzed by mutual information method and partial rank correlation method respectively. The results show that
the order of sensitivity of the parameters obtained by the two methods is the same, PGA is the most influen-
tial parameter on the random seismic response of the main transformer, and the length of high voltage bush-
ing H_l, density of high voltage bushing D_0, equivalent stiffness coefficient of flange section F_l, intrinsic
weight B_w and input direction also have a certain influence, while other parameters have little influence on
the random seismic response of the main transformer.

Key words: main transformer; seismic response; stepwise regression method; mutual information; partial
rank correlation method
电力系统是国家、社会和经济的主要生命线工程之一，对电力系统的破坏会造成不可预测的损失[1]。变电站作为电力系统的枢纽，其安全性尤为重要。近年来，由于特高压输电技术、新能源输电和西电东送的发展，变电站的电压等级越来越高，数量越来越多，形式越来越多样。同时，随着电压等级的提升，变电站设施地震的地震危害性逐渐增大，尤其是具有重要功能的主变压器，破坏之后造成的损失也会越来越大[2]。由此，开展变电站设施地震研究具有重要的意义[3]。

主变压器(generator step-up transformer, GSU)是变电站内主要用于输变电的总降压变压器，也是变电站的核心部分，是保证电力系统安全稳定运行的关键设备[4]。一旦发生故障，将造成重大损失，特别是在地震的情况下。近年来，地震对主变压器造成的破坏及冲击[5]。因此，主变压器的地震响应特性分析是十分必要的，明确其地震响应规律，探究结构、地震参数对于其地震响应的敏感性程度，对于主变压器的抗震设计、地震损伤预测、地震易损性分析和震后加固与维修具有重要的参考意义[6]。

图1 汶川地震中主变压器套管损坏情况
Fig. 1 Damage of main transformer bushing in Wenchuan earthquake

本研究基于互信息法和偏秩相关法对特高压主变压器的随机地震响应进行了参数敏感性分析。首先，分析主变压器的结构特性、震损特性，总结其相关的地震响应参数和取值范围，评估关键震损评价指标；其次，通过拉丁超立方样形成不同的参数组合，并构建有限元模型进行地震时程分析，提取关键部位地震响应值；之后，通过互信息法和偏秩相关法对参数进行参数敏感性分析；最后，对比两种方法的分析结果，得出对特高压主变压器随机地震响应影响较大的参数，总结地震响应特性的内在规律。

1 方法与原理

1.1 敏感性分析

敏感性分析的原理是通过全部参量在取值范围内的随机抽样形成一系列的输入数组得到一系列的输出再进行分析[13]。一般敏感性分析方法有两种，分别是局部敏感性分析和全局敏感性分析。局部敏感性分析不能考虑到参数之间的交互作用对模型输出的贡献；全局敏感性分析方法能够考虑参数之间的联合效应对输出的影响，结果稳定可靠[14]。常用的敏感性分析方法有基于原子的 Morris 筛法、互信息法、偏秩相关法、基于 Sobol 的指数法、逐步回归法和偏秩相关法等[15-16]。其中，互信息法和偏秩相关法都是全局敏感性分析方法，对参数的概率分布无特殊要求，适合特高压主变压器随机地震响应这种参数众多而且非线性的分析。本研究的敏感性分析流程见图2。
如果随机事件 X, Y 相互独立，则 $I(x, y) = 0$；如果随机事件 X, Y 完全相关，则 $I(x, y) = 0.5 \left[H(x) + H(y) \right]$。$U$ 和 R 是用来衡量互信息量度的两个指标，如下

$$U(x, y) = 2 \left[\frac{I(x, y)}{H(x) + H(y)} \right] \quad (3)$$

$$R(x, y) = \left[1 - \exp(-2I(x, y)) \right]^{1/2} \quad (4)$$

其中，U 和 R 的值越大，说明随机事件 X, Y 之间的相关性越强；同理，X 若为输入变量，Y 为输出变量，U 和 R 的值越大，说明该输入变量与输出变量相关性越高，则该输入变量的敏感性越强。

1.3 偏秩相关法

偏秩相关法是一种利用“等级位差”来进行分析的全局敏感性分析方法，适用条件为各变量有相同维度的随机变量。首先计算各变量的秩相关系数，通过抽样方法生成 n 维变量 $X_1, X_2, X_3, \ldots, X_n$，将变量序列得到 n 维输出变量 Y，则组成的输入/输出变量矩阵为

$$Z = \begin{pmatrix}
X_{11} & X_{12} & \cdots & X_{1n} \\
X_{21} & X_{22} & \cdots & X_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
X_{n1} & X_{n2} & \cdots & X_{nn}
\end{pmatrix} \quad (5)$$

变量 $X_1, X_2, X_3, \ldots, X_n$ 中，任意两个变量之间的秩相关系数为

$$r_{XY} = r_{X_1Y} = r_{X_2Y} = r_{X_3Y} = \cdots = r_{X_nY} = \frac{6 \sum_{i=1}^{n} (R_{i} - Q_{i})^2}{n^3 - n} \quad (6)$$

其中，R_i 为 n 维变量 Y/X_i 中第 i 个变量的秩（该变量在 n 维变量从大到小排序后所在的位次）；Q_i 为 n 维变量 X_i 中第 i 个变量的秩。

则根据这些输入/输出变量间的秩相关系数矩阵 P 和 P 的逆矩阵 C 为

$$C = \begin{pmatrix}
\frac{1}{1 - R_{1}^2} & C_{12} & \cdots & C_{1n} & \frac{-B_{1}}{1 - R_{1}^2} \\
C_{21} & \frac{1}{1 - R_{2}^2} & \cdots & C_{2n} & \frac{-B_{2}}{1 - R_{2}^2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
C_{n1} & C_{n2} & \cdots & \frac{1}{1 - R_{n}^2} & \frac{-B_{n}}{1 - R_{n}^2} \\
\frac{-B_{1}}{1 - R_{1}^2} & \frac{-B_{2}}{1 - R_{2}^2} & \cdots & \frac{-B_{n}}{1 - R_{n}^2} & \frac{1}{1 - R_{n}^2}
\end{pmatrix}$$

图 2 敏感性分析流程

Fig. 2 Sensitivity analysis process

图 3 互信息和信息熵的关系

Fig. 3 The relationship between mutual information and information entropy
材料制成，两端有金属法兰，如图4所示。

图4 特高压主变压器结构示意

Fig.4 Structure of main transformer

虽然不同的主变压器有差异，但在类型上较为统一，在进行有限元计算之前，需要对模型进行一定的简化。考虑到主变压器的结构特征和相关的试验评估经验，由于套管相对本体较高且细长，套管顶部会出现较大的相对位移，套管根部会出现应力集中和塑性铰的显现，体位会有所偏移和转折；本体重量较大，在地震中会倾向倾覆和滑移。根据此，简化主变压器的结构形式为：本体、升高座、套管和上部配重4部分。

与主变压器结构有关的参数可以分为结构参数、几何参数、材料参数和地震参数4种类型。在选取参数时，应充分考虑主变压器的结构特性、震害特性和地震的随机性。本研究所根据现场调研和《国家电网输电工程总体设计》提供的数据，总结了如表1所示的主变压器地震响应参数集。对于地震动参数，反应谱加速度的概率分布不成熟。因此，本研究所采用PGA和输入方向作为地震动的随机参数。

表1 主变压器的地震响应参数集

<table>
<thead>
<tr>
<th>编号</th>
<th>类型</th>
<th>参数</th>
<th>概率分布</th>
<th>取值</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>几何参数</td>
<td>本体长 $L_{	ext{b}}$ /m</td>
<td>均匀</td>
<td>5 ~ 8</td>
</tr>
<tr>
<td>2</td>
<td>几何参数</td>
<td>本体宽 $b_{	ext{b}}$ /m</td>
<td>均匀</td>
<td>2.3</td>
</tr>
<tr>
<td>3</td>
<td>几何参数</td>
<td>本体高 $h_{	ext{b}}$ /m</td>
<td>均匀</td>
<td>2.5 ~ 3.8</td>
</tr>
<tr>
<td>4</td>
<td>几何参数</td>
<td>本体重 $m_{	ext{b}}$ /t</td>
<td>均匀</td>
<td>250 ~ 350</td>
</tr>
<tr>
<td>5</td>
<td>结构参数</td>
<td>高压套管长度 $H_{	ext{h}}$ /m</td>
<td>均匀</td>
<td>7 ~ 10</td>
</tr>
<tr>
<td>6</td>
<td>结构参数</td>
<td>高压套管外径 $D_{	ext{h}}$ /m</td>
<td>均匀</td>
<td>0.4 ~ 0.6</td>
</tr>
<tr>
<td>7</td>
<td>结构参数</td>
<td>高压套管壁厚 $h_{	ext{h}}$ /m</td>
<td>均匀</td>
<td>0.04 ~ 0.06</td>
</tr>
<tr>
<td>8</td>
<td>材料参数</td>
<td>高压套管弹性模量 $E_{	ext{h}}$ /GPa</td>
<td>均匀</td>
<td>90 ~ 110</td>
</tr>
<tr>
<td>9</td>
<td>材料参数</td>
<td>高压套管密度 $d_{	ext{h}}$ /kg·m^{-3}</td>
<td>均匀</td>
<td>1066 ~ 3350</td>
</tr>
<tr>
<td>10</td>
<td>结构参数</td>
<td>法兰截面等效刚度系数 $F_{	ext{f}}$</td>
<td>均匀</td>
<td>0.5 ~ 0.8</td>
</tr>
<tr>
<td>11</td>
<td>结构参数</td>
<td>中压套管比例 $M_{	ext{b}}$</td>
<td>均匀</td>
<td>0.3 ~ 0.5</td>
</tr>
<tr>
<td>12</td>
<td>地震参数</td>
<td>输入方向 α /rad</td>
<td>均匀</td>
<td>0 ~ 2\pi</td>
</tr>
<tr>
<td>13</td>
<td>地震参数</td>
<td>PGA/g</td>
<td>对数 $\mu = -1.16$, $\sigma = 0.67$</td>
<td></td>
</tr>
</tbody>
</table>
2.2 主变压器的地震响应分析

结构分析软件 SAP2000 的开源接口允许程序参数化建模与计算，能够实现大量有限元模型的构建与仿真。图 5 为特高压主变压器的有限元模型，采用杆单元体系，模态阻尼比为 5%。

图 5 主变压器的有限元模型

本研究通过拉丁超立方抽样在主变压器地震响应参数的取值范围内形成了 500 组不同的参数组合，并进行地震动响应计算，其中符合要求的地震波通过 PEER 强震数据库搜寻，地震参数的选取包括地震分段、场地条件、地震影响系数和卓越频率参考《水电站（换流站）抗震安全风险评估导则》。图 6 展示了这些地震波的加速度反应谱。基于主变压器的结构特性和震损特性，本体的滑移、倾覆和套管的开裂与折断是主要的失效模式，由此以高压套管顶

部位移 U_p(mm)、高压套管根部应力 S_p(MPa) 和本体顶部位移 U_c(mm) 为动力特性指标。由于篇幅限制，表 2 和表 3 展示了部分抽样结果与计算结果。图 7 为部分工况的主变压器最大剪应力响应和最大位移响应结果。

图 6 地震波的加速度反应谱

图 7 主变压器地震响应结果（PGA = 0.69g）

表 2 部分主变压器地震响应参数的抽样结果

<table>
<thead>
<tr>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
<th>B_4</th>
<th>D_1</th>
<th>E_1</th>
<th>H_1</th>
<th>H_2</th>
<th>H_3</th>
<th>F_1</th>
<th>M_1</th>
<th>α</th>
<th>PGA</th>
<th>U_p</th>
<th>S_p</th>
<th>U_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.81</td>
<td>3.20</td>
<td>3.29</td>
<td>335.6</td>
<td>2331.3</td>
<td>50.79</td>
<td>7.54</td>
<td>0.53</td>
<td>0.060</td>
<td>0.57</td>
<td>0.40</td>
<td>5.48</td>
<td>0.47</td>
<td>58.1</td>
<td>50.79</td>
<td>7.54</td>
</tr>
<tr>
<td>6.80</td>
<td>3.28</td>
<td>3.75</td>
<td>340.9</td>
<td>1373.4</td>
<td>37.56</td>
<td>7.05</td>
<td>0.40</td>
<td>0.043</td>
<td>0.70</td>
<td>0.46</td>
<td>4.81</td>
<td>0.96</td>
<td>6.80</td>
<td>37.56</td>
<td>7.05</td>
</tr>
<tr>
<td>6.30</td>
<td>2.11</td>
<td>2.59</td>
<td>311.6</td>
<td>2741.9</td>
<td>59.97</td>
<td>9.22</td>
<td>0.56</td>
<td>0.055</td>
<td>0.58</td>
<td>0.41</td>
<td>4.90</td>
<td>0.81</td>
<td>6.30</td>
<td>59.97</td>
<td>9.22</td>
</tr>
<tr>
<td>7.75</td>
<td>2.49</td>
<td>3.27</td>
<td>250.6</td>
<td>1924.9</td>
<td>41.12</td>
<td>9.37</td>
<td>0.47</td>
<td>0.055</td>
<td>0.57</td>
<td>0.35</td>
<td>3.94</td>
<td>0.91</td>
<td>7.75</td>
<td>41.12</td>
<td>9.37</td>
</tr>
<tr>
<td>7.91</td>
<td>2.40</td>
<td>3.17</td>
<td>325.9</td>
<td>1186.8</td>
<td>35.39</td>
<td>7.39</td>
<td>0.55</td>
<td>0.053</td>
<td>0.60</td>
<td>0.45</td>
<td>5.36</td>
<td>1.36</td>
<td>7.91</td>
<td>35.39</td>
<td>7.39</td>
</tr>
<tr>
<td>7.17</td>
<td>2.03</td>
<td>3.49</td>
<td>257.7</td>
<td>3342.4</td>
<td>55.79</td>
<td>7.25</td>
<td>0.47</td>
<td>0.040</td>
<td>0.68</td>
<td>0.34</td>
<td>5.42</td>
<td>0.22</td>
<td>7.17</td>
<td>55.79</td>
<td>7.25</td>
</tr>
<tr>
<td>6.51</td>
<td>2.74</td>
<td>2.57</td>
<td>316.4</td>
<td>1695.2</td>
<td>52.48</td>
<td>7.43</td>
<td>0.49</td>
<td>0.047</td>
<td>0.72</td>
<td>0.38</td>
<td>0.03</td>
<td>1.04</td>
<td>6.51</td>
<td>52.48</td>
<td>7.43</td>
</tr>
<tr>
<td>7.51</td>
<td>2.36</td>
<td>3.59</td>
<td>290.6</td>
<td>2692.4</td>
<td>30.94</td>
<td>8.88</td>
<td>0.46</td>
<td>0.044</td>
<td>0.56</td>
<td>0.47</td>
<td>0.68</td>
<td>0.75</td>
<td>7.51</td>
<td>30.94</td>
<td>8.88</td>
</tr>
<tr>
<td>6.43</td>
<td>2.73</td>
<td>3.09</td>
<td>297.7</td>
<td>1897.8</td>
<td>57.13</td>
<td>8.75</td>
<td>0.43</td>
<td>0.044</td>
<td>0.73</td>
<td>0.31</td>
<td>5.96</td>
<td>0.40</td>
<td>6.43</td>
<td>57.13</td>
<td>8.75</td>
</tr>
<tr>
<td>5.50</td>
<td>3.10</td>
<td>2.98</td>
<td>283.5</td>
<td>2579.4</td>
<td>42.55</td>
<td>9.43</td>
<td>0.42</td>
<td>0.049</td>
<td>0.54</td>
<td>0.42</td>
<td>5.87</td>
<td>0.64</td>
<td>5.50</td>
<td>42.55</td>
<td>9.43</td>
</tr>
</tbody>
</table>
表 3 互信息法的分析结果

Tab. 3 Analysis results of mutual information method

<table>
<thead>
<tr>
<th>序号</th>
<th>参数类型</th>
<th>参数名</th>
<th>U_e</th>
<th>U_R</th>
<th>参数类型</th>
<th>参数名</th>
<th>S_e</th>
<th>S_R</th>
<th>参数类型</th>
<th>参数名</th>
<th>U_m</th>
<th>U_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>地震</td>
<td>H_i</td>
<td>0.7746</td>
<td>1.9255</td>
<td>地震</td>
<td>H_i</td>
<td>0.7269</td>
<td>1.8108</td>
<td>地震</td>
<td>H_i</td>
<td>1.0423</td>
<td>2.6536</td>
</tr>
<tr>
<td>2</td>
<td>几何</td>
<td>H_j</td>
<td>0.1683</td>
<td>0.5345</td>
<td>几何</td>
<td>H_j</td>
<td>0.1597</td>
<td>0.5682</td>
<td>几何</td>
<td>H_j</td>
<td>0.1527</td>
<td>0.4715</td>
</tr>
<tr>
<td>3</td>
<td>材料</td>
<td>D_e</td>
<td>0.1619</td>
<td>0.5259</td>
<td>材料</td>
<td>D_e</td>
<td>0.1908</td>
<td>0.5633</td>
<td>材料</td>
<td>D_e</td>
<td>0.1106</td>
<td>0.4454</td>
</tr>
<tr>
<td>4</td>
<td>结构</td>
<td>F_e</td>
<td>0.1455</td>
<td>0.5025</td>
<td>结构</td>
<td>F_e</td>
<td>0.1482</td>
<td>0.5065</td>
<td>结构</td>
<td>F_e</td>
<td>0.1094</td>
<td>0.4433</td>
</tr>
<tr>
<td>5</td>
<td>几何</td>
<td>B_n</td>
<td>0.1364</td>
<td>0.4886</td>
<td>几何</td>
<td>E_n</td>
<td>0.1397</td>
<td>0.4494</td>
<td>几何</td>
<td>B_n</td>
<td>0.1084</td>
<td>0.4415</td>
</tr>
<tr>
<td>6</td>
<td>几何</td>
<td>B_n</td>
<td>0.1329</td>
<td>0.4831</td>
<td>几何</td>
<td>B_m</td>
<td>0.1282</td>
<td>0.4667</td>
<td>几何</td>
<td>B_m</td>
<td>0.1069</td>
<td>0.4388</td>
</tr>
<tr>
<td>7</td>
<td>几何</td>
<td>H_d</td>
<td>0.1275</td>
<td>0.4744</td>
<td>几何</td>
<td>H_d</td>
<td>0.1198</td>
<td>0.4615</td>
<td>几何</td>
<td>B_n</td>
<td>0.1055</td>
<td>0.4361</td>
</tr>
<tr>
<td>8</td>
<td>几何</td>
<td>B_n</td>
<td>0.1261</td>
<td>0.4722</td>
<td>几何</td>
<td>B_n</td>
<td>0.1190</td>
<td>0.4602</td>
<td>几何</td>
<td>B_n</td>
<td>0.0963</td>
<td>0.4185</td>
</tr>
<tr>
<td>9</td>
<td>几何</td>
<td>B_i</td>
<td>0.1227</td>
<td>0.4665</td>
<td>地震</td>
<td>a</td>
<td>0.1171</td>
<td>0.4569</td>
<td>地震</td>
<td>a</td>
<td>0.0945</td>
<td>0.4168</td>
</tr>
<tr>
<td>10</td>
<td>材料</td>
<td>E_n</td>
<td>0.1226</td>
<td>0.4663</td>
<td>几何</td>
<td>B_i</td>
<td>0.1141</td>
<td>0.4517</td>
<td>几何</td>
<td>B_i</td>
<td>0.0902</td>
<td>0.4062</td>
</tr>
<tr>
<td>11</td>
<td>几何</td>
<td>B_n</td>
<td>0.1153</td>
<td>0.4538</td>
<td>几何</td>
<td>B_n</td>
<td>0.1134</td>
<td>0.4505</td>
<td>结构</td>
<td>M_e</td>
<td>0.0878</td>
<td>0.4013</td>
</tr>
<tr>
<td>12</td>
<td>地震</td>
<td>a</td>
<td>0.1120</td>
<td>0.4480</td>
<td>几何</td>
<td>B_n</td>
<td>0.1082</td>
<td>0.4412</td>
<td>结构</td>
<td>F_e</td>
<td>0.0831</td>
<td>0.3914</td>
</tr>
<tr>
<td>13</td>
<td>结构</td>
<td>M_e</td>
<td>0.1027</td>
<td>0.4309</td>
<td>结构</td>
<td>M_e</td>
<td>0.0976</td>
<td>0.4211</td>
<td>材料</td>
<td>E_e</td>
<td>0.0831</td>
<td>0.3914</td>
</tr>
</tbody>
</table>

3. 敏感性分析结果

基于特高压主变压器的随机地震动响应结果，以表 1 所示抽样的 500 组参数为输入变量，以相应计算得到 3 个 500 组地震响应（高压套管顶部位移 U_e、高压套管顶部应力 S_e 和本体顶部位移 U_m）为输出变量。之后，再将输入、输出变量组成 3 个 500×14 的矩阵，应用互信息法和偏秩相关分析法进行参数的敏感性分析。

3.1 互信息法分析结果

利用 Matlab 实现逐步回归法的基本程序，之后对输入/输出的变量矩阵进行敏感性分析，结果如表 3 所示。可以看出：对于高压套管顶部位移 U_e 来说，U_e 是敏感性最高的参数且远高于其他参数；中压套管比例 M_e 是敏感性最低的参数，其余参数的敏感性相差不大。前 8 位排序为 $U_e > H_i > D_i > E_n > B_i > B_n > M_e > E_e$；高压套管长度 H_i ，高压套管密 D_i ，法兰截面等效刚度系数 F_i ，套管的弹性模量 E_n ，高压套管壁厚 H_i ，高压套管外径 H_i 等主要影响到套管本身的功能性能影响到其应力，而中压套管比例 M_e 的改变与高压套管无关，所以其敏感性较低。

对于本体顶部位移 U_m 来说，U_m 是敏感性最高的参数且远高于其他参数，套管的弹性模量 E_n 是敏感性最高的参数，前 8 位排序为 $U_m > B_n > H_i > D_i > E_n > B_i > B_n > M_e > E_e$；高压套管长度 H_i ，高压套管密 D_i ，法兰截面等效刚度系数 F_i ，套管的弹性模量 E_n ，高压套管壁厚 H_i ，高压套管外径 H_i 等都通过改变套管本身的性能影响到其应力，而中压套管比例 M_e 的改变与高压套管无关，所以其敏感性较低。

[ChinaXiv合作期刊]
3.2 偏秩相关法分析结果

利用 Matlab 程序实现偏秩相关法的基本程序，将 500 组输入输出数据带入程序进行敏感性分析，得到如表 4 所示的分析结果。

对于高压套管顶端位移 U_s 来说，PGA 是敏感性最高的参数，$|P|$ 值达到了 0.700，中压套管比例 M 是敏感性最低的参数，其余参数的排序为高压套管长度 $H_i > $ 高压套管密度 $D_e > $ 法兰截面等效刚度系数 $F_s > $ 本体高 $B_h > $ 本体宽 $B_w > $ 高压套管外径 $H_d > $ 高压套管壁厚 $H_s > $ 本体长 $B_i > $ 套管弹性模量 $E_c > $ 本体重 $B_m > $ 输入方向 α。

对于高压套管根部应力 S_s 来说，PGA 是敏感性最高的参数，$|P|$ 值达到了 0.778，中压套管比例 M 是敏感性最低的参数，其余参数的排序为高压套管长度 $H_i > $ 高压套管密度 $D_e > $ 法兰截面等效刚度系数 $F_s > $ 本体高 $B_h > $ 本体宽 $B_w > $ 高压套管外径 $H_d > $ 高压套管壁厚 $H_s > $ 本体长 $B_i > $ 套管弹性模量 $E_c > $ 本体重 $B_m > $ 输入方向 α。

对于本体顶部位移 U_m 来说，PGA 是敏感性最高的参数，$|P|$ 值达到了 0.823，套管弹性模量 E_c 是敏感性最低的参数，其余参数的排序为输入方向 $\alpha > $ 本体重 $B_m > $ 高压套管密度 $D_e > $ 高压套管长度 $H_i > $ 本体高 $B_h > $ 本体宽 $B_w > $ 高压套管壁厚 $H_s > $ 高压套管外径 $H_d > $ 中压套管比例 $M_e > $ 法兰截面等效刚度系数 F_s。

表 4 偏秩相关法分析结果

| 参数类型 | 参数名 | $|P|$ | 参数类型 | 参数名 | $|P|$ | 参数类型 | 参数名 | $|P|$ |
|----------|--------|-------|----------|--------|-------|----------|--------|-------|
| 地震 | PGA | 0.700 | 地震 | PGA | 0.778 | 地震 | PGA | 0.823 |
| 几何 | H_i | 0.388 | 几何 | H_i | 0.287 | 几何 | B_m | 0.170 |
| 材料 | D_e | 0.204 | 材料 | D_e | 0.227 | 几何 | B_m | 0.159 |
| 结构 | F_s | 0.164 | 结构 | F_s | 0.154 | 材料 | E_c | 0.144 |
| 几何 | B_h | 0.150 | 材料 | E_c | 0.085 | 几何 | B_h | 0.150 |
| 几何 | B_w | 0.097 | 几何 | H_s | 0.081 | 几何 | B_m | 0.095 |
| 几何 | H_d | 0.081 | 几何 | H_s | 0.077 | 几何 | B_m | 0.065 |
| 几何 | H_s | 0.048 | 几何 | B_m | 0.077 | 几何 | B_m | 0.054 |
| 材料 | E_c | 0.081 | 几何 | B_m | 0.054 | 几何 | H_i | 0.054 |
| 几何 | B_m | 0.030 | 几何 | B_m | 0.031 | 结构 | M_e | 0.039 |
| 12 | 地震 | α | 0.016 | 几何 | B_m | 0.015 | 结构 | F_s | 0.023 |
| 13 | 结构 | M_e | 0.002 | 结构 | M_e | 0.009 | 材料 | E_c | 0.022 |

3.3 结果对比分析

对比两种敏感性分析方法的结果，见图 8～10。可以发现，对特高压主变压器的 3 个地震响应评价指标高压套管顶部位移 U_s、高压套管根部应力 S_s 和本体顶部位移 U_m，两种敏感性分析方法得到的 参数敏感性排序都是相同的，说明了结果的正确性与合理性。

总体分析每个参数对特高压主变压器整体随机地震响应评价指标的综合影响，将参数在两种方法下的 U_s, R 和 $|P|$ 值进行统一化并相加，结果如图 11 所示。可以看出，PGA 是对主变压器随机地震响应
影响最大的参数，高压套管长度 H_1、高压套管密度 D_1、法兰截面等效刚度系数 F_1、本体重 B_2 和本体高 B_2 也具有一定影响，而其他的参数对于特高压主变压器随机地震响应的影响较小，在之后抗震设计和地震易损性分析中可以不考虑。

图 9 S_r 的敏感性分析结果对比

![图9](image)

图 10 U_m 的敏感性分析结果对比

![图10](image)

图 11 每个参数对于特高压主变压器整体随机地震响应敏感性

![图11](image)

4 结论

特高压主变压器的地震响应随着 PGA、地震输人方向、自身结构、几何、材料等参数的变化而变化，这些因素对于主变压器随机地震响应的影响规律和影响程度都是不同的。本研究通过互信息法和偏秩相关法分析了这些因素的参数敏感性，得到了以下结论。

1) 通过两种分析方法得知，PGA 是对特高压主变压器 3 个地震响应指标影响最大的参数，中压套管比例 M_1 对于高压套管顶部位移 U_1 和根部应力 S_1 的影响最小，套管弹性模量 E_1 对于本体顶部位移 U_m 的影响最小；两种方法得到的参数敏感性排序相同，说明了结果的合理性和正确性。

2) 综合评估各参数对特高压主变压器的随机地震响应的影响程度可知，PGA 是对主变压器随机地震响应影响最大的参数，高压套管长度 H_1、高压套管密度 D_1、法兰截面等效刚度系数 F_1、本体重 B_2 和输入方向也具有一定影响，而其他的参数对于主变压器随机地震响应的影响较小。

通过本研究对特高压主变压器影响参数的敏感性分析，精确识别了特高压主变压器随机地震响应的敏感因素，为抗震设计和进一步的地震易损性分析提供了参考和指导。

参考文献：

