Your conditions: Renjie Li
  • Shock-induced stripping of satellite ISM/CGM in IllustrisTNG clusters at $z\sim0$

    Subjects: Astronomy >> Astrophysical processes submitted time 2023-02-19

    Abstract: Using the IllustrisTNG simulation, we study the interaction of large-scale shocks with the circumgalactic medium (CGM) and interstellar medium (ISM) of star-forming (SF) satellite galaxies in galaxy clusters. These shocks are usually produced by mergers and massive accretion. Our visual inspection shows that approximately half of SF satellites have encountered shocks in their host clusters at $z\leq0.11$. After a satellite crosses a shock front and enters the postshock region, the ram pressure on it is boosted significantly. Both the CGM and ISM can be severely impacted, either by striping or compression. The stripping of the ISM is particularly important for low-mass galaxies with $\log (M_{*}/M_{\odot})<10$ and can occur even in the outskirts of galaxy clusters. In comparison, satellites that do not interact with shocks lose their ISM only in the inner regions of clusters. About half of the ISM is stripped within about 0.6 Gyr after it crosses the shock front. Our results show that shock-induced stripping plays an important role in quenching satellite galaxies in clusters.

  • ELUCID VII: Using Constrained Hydro Simulations to Explore the Gas Component of the Cosmic Web

    Subjects: Astronomy >> Astrophysical processes submitted time 2023-02-19

    Abstract: Using reconstructed initial conditions in the SDSS survey volume, we carry out constrained hydrodynamic simulations in three regions representing different types of the cosmic web: the Coma cluster of galaxies; the SDSS great wall; and a large low-density region at $z\sim 0.05$. These simulations, which include star formation and stellar feedback but no AGN formation and feedback, are used to investigate the properties and evolution of intergalactic and intra-cluster media. About half of the warm-hot intergalactic gas is associated with filaments in the local cosmic web. Gas in the outskirts of massive filaments and halos can be heated significantly by accretion shocks generated by mergers of filaments and halos, respectively, and there is a tight correlation between gas temperature and the strength of the local tidal field. The simulations also predict some discontinuities associated with shock fronts and contact edges, which can be tested using observations of the thermal SZ effect and X-rays. A large fraction of the sky is covered by Ly$\alpha$ and OVI absorption systems, and most of the OVI systems and low-column density HI systems are associated with filaments in the cosmic web. The constrained simulations, which follow the formation and heating history of the observed cosmic web, provide an important avenue to interpret observational data. With full information about the origin and location of the cosmic gas to be observed, such simulations can also be used to develop observational strategies.

  • Shock-induced stripping of satellite ISM/CGM in IllustrisTNG clusters at $z\sim0$

    Subjects: Astronomy >> Astrophysical processes submitted time 2023-02-19

    Abstract: Using the IllustrisTNG simulation, we study the interaction of large-scale shocks with the circumgalactic medium (CGM) and interstellar medium (ISM) of star-forming (SF) satellite galaxies in galaxy clusters. These shocks are usually produced by mergers and massive accretion. Our visual inspection shows that approximately half of SF satellites have encountered shocks in their host clusters at $z\leq0.11$. After a satellite crosses a shock front and enters the postshock region, the ram pressure on it is boosted significantly. Both the CGM and ISM can be severely impacted, either by striping or compression. The stripping of the ISM is particularly important for low-mass galaxies with $\log (M_{*}/M_{\odot})<10$ and can occur even in the outskirts of galaxy clusters. In comparison, satellites that do not interact with shocks lose their ISM only in the inner regions of clusters. About half of the ISM is stripped within about 0.6 Gyr after it crosses the shock front. Our results show that shock-induced stripping plays an important role in quenching satellite galaxies in clusters.

  • POViT: Vision Transformer for Multi-objective Design and Characterization of Nanophotonic Devices

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: We solve a fundamental challenge in semiconductor IC design: the fast and accurate characterization of nanoscale photonic devices. Much like the fusion between AI and EDA, many efforts have been made to apply DNNs such as convolutional neural networks (CNN) to prototype and characterize next-gen optoelectronic devices commonly found in photonic integrated circuits (PIC) and LiDAR. These prior works generally strive to predict the quality factor (Q) and modal volume (V) of for instance, photonic crystals, with ultra-high accuracy and speed. However, state-of-the-art models are still far from being directly applicable in the real-world: e.g. the correlation coefficient of V ($V_{coeff}$ ) is only about 80%, which is much lower than what it takes to generate reliable and reproducible nanophotonic designs. Recently, attention-based transformer models have attracted extensive interests and been widely used in CV and NLP. In this work, we propose the first-ever Transformer model (POViT) to efficiently design and simulate semiconductor photonic devices with multiple objectives. Unlike the standard Vision Transformer (ViT), we supplied photonic crystals as data input and changed the activation layer from GELU to an absolute-value function (ABS). Our experiments show that POViT exceeds results reported by previous models significantly. The correlation coefficient $V_{coeff}$ increases by over 12% (i.e., to 92.0%) and the prediction errors of Q is reduced by an order of magnitude, among several other key metric improvements. Our work has the potential to drive the expansion of EDA to fully automated photonic design. The complete dataset and code will be released to aid researchers endeavoring in the interdisciplinary field of physics and computer science.

  • Predicting the $Q$ factor and modal volume of photonic crystal nanocavities via deep learning

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: A Deep Learning (DL) based forward modeling approach has been proposed to accurately characterize the relationship between design parameters and the optical properties of Photonic Crystal (PC) nanocavities. The proposed data-driven method using Deep Neural Networks (DNN) is set to replace conventional approaches manually performed in simulation software. The demonstrated DNN model makes predictions not only for the Q factor but also for the modal volume V for the first time, granting us precise control over both properties in the design process. Specifically, a three-channel convolutional neural network (CNN), which consists of two convolutional layers followed by two fully-connected layers, is trained on a large-scale dataset of 12,500 nanocavities. The experimental results show that the DNN has achieved a state-of-the-art performance in terms of prediction accuracy (up to 99.9999% for Q and 99.9890% for V ) and convergence speed (i.e., orders-of-magnitude speedup). The proposed approach overcomes shortcomings of existing methods and paves the way for DL-based on-demand and data-driven optimization of PC nanocavities applicable to the rapid prototyping of nanoscale lasers and integrated photonic devices of high Q and small V.