您选择的条件: Yichen Zhang
  • The SOFIA Massive (SOMA) Star Formation Survey. IV. Isolated Protostars

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present $\sim10-40\,\mu$m SOFIA-FORCAST images of 11 isolated protostars as part of the SOFIA Massive (SOMA) Star Formation Survey, with this morphological classification based on 37 $\mu$m imaging. We develop an automated method to define source aperture size using the gradient of its background-subtracted enclosed flux and apply this to build spectral energy distributions (SEDs). We fit the SEDs with radiative transfer models, developed within the framework of turbulent core accretion (TCA) theory, to estimate key protostellar properties. Here, we release the sedcreator python package that carries out these methods. The SEDs are generally well fitted by the TCA models, from which we infer initial core masses $M_c$ ranging from $20-430\:M_\odot$, clump mass surface densities $\Sigma_{\rm cl}\sim0.3-1.7\:{\rm{g\:cm}}^{-2}$ and current protostellar masses $m_*\sim3-50\:M_\odot$. From a uniform analysis of the 40 sources in the full SOMA survey to date, we find that massive protostars form across a wide range of clump mass surface density environments, placing constraints on theories that predict a minimum threshold $\Sigma_{\rm cl}$ for massive star formation. However, the upper end of the $m_*-\Sigma_{\rm cl}$ distribution follows trends predicted by models of internal protostellar feedback that find greater star formation efficiency in higher $\Sigma_{\rm cl}$ conditions. We also investigate protostellar far-IR variability by comparison with IRAS data, finding no significant variation over an $\sim$40 year baseline.

  • The Perseus ALMA Chemistry Survey (PEACHES). I. The Complex Organic Molecules in Perseus Embedded Protostars

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: To date, about two dozen low-mass embedded protostars exhibit rich spectra with lines of complex organic molecule (COM). These protostars seem to possess different enrichment in COMs. However, the statistics of COM abundance in low-mass protostars are limited by the scarcity of observations. This study introduces the Perseus ALMA Chemistry Survey (PEACHES), which aims at unbiasedly characterizing the chemistry of COMs toward the embedded (Class 0/I) protostars in the Perseus molecular cloud. Of 50 embedded protostars surveyed, 58% of them have emission from COMs. A 56%, 32%, and 40% of the protostars have CH$_3$OH, CH$_3$OCHO, and N-bearing COMs, respectively. The detectability of COMs depends neither on the averaged continuum brightness temperature, a proxy of the H$_2$ column density, nor on the bolometric luminosity and the bolometric temperature. For the protostars with detected COMs, CH$_3$OH has a tight correlation with CH$_3$CN, spanning more than two orders of magnitude in column densities normalized by the continuum brightness temperature, suggesting a chemical relation between CH$_3$OH and CH$_3$CN and a large chemical diversity in the PEACHES samples at the same time. A similar trend with more scatter is also found between all identified COMs, hinting at a common chemistry for the sources with COMs. The correlation between COMs is insensitive to the protostellar properties, such as the bolometric luminosity and the bolometric temperature. The abundance of larger COMs (CH$_3$OCHO and CH$_3$OCH$_3$) relative to that of smaller COMs (CH$_3$OH and CH$_3$CN) increases with the inferred gas column density, hinting at an efficient production of complex species in denser envelopes.

  • Massive Protostars in a Protocluster -- A Multi-Scale ALMA View of G35.20-0.74N

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present a detailed study of the massive star-forming region G35.2-0.74N with ALMA 1.3 mm multi-configuration observations. At 0.2" (440 au) resolution, the continuum emission reveals several dense cores along a filamentary structure, consistent with previous ALMA 0.85 mm observations. At 0.03" (66 au) resolution, we detect 22 compact sources, most of which are associated with the filament. Four of the sources are associated with compact centimeter continuum emission, and two of these are associated with H30{\alpha} recombination line emission. The H30{\alpha} line kinematics show ordered motion of the ionized gas, consistent with disk rotation and/or outflow expansion. We construct models of photoionized regions to simultaneously fit the multi-wavelength free-free fluxes and the H30{\alpha} total fluxes. The derived properties suggest the presence of at least three massive young stars with nascent hypercompact Hii regions. Two of these ionized regions are surrounded by a large rotating structure that feeds two individual disks, revealed by dense gas tracers, such as SO2, H2CO, and CH3OH. In particular, the SO2 emission highlights two spiral structures in one of the disks and probes the faster-rotating inner disks. The 12CO emission from the general region reveals a complex outflow structure, with at least four outflows identified. The remaining 18 compact sources are expected to be associated with lower-mass protostars forming in the vicinity of the massive stars. We find potential evidence for disk disruption due to dynamical interactions in the inner region of this protocluster. The spatial distribution of the sources suggests a smooth overall radial density gradient without subclustering, but with tentative evidence of primordial mass segregation.

  • Salt-bearing disk candidates around high-mass young stellar objects

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Molecular lines tracing the orbital motion of gas in a well-defined disk are valuable tools for inferring both the properties of the disk and the star it surrounds. Lines that arise only from a disk, and not also from the surrounding molecular cloud core that birthed the star or from the outflow it drives, are rare. Several such emission lines have recently been discovered in one example case, those from NaCl and KCl salt molecules. We studied a sample of 23 candidate high-mass young stellar objects (HMYSOs) in 17 high-mass star-forming regions to determine how frequently emission from these species is detected. We present five new detections of water, NaCl, KCl, PN, and SiS from the innermost regions around the objects, bringing the total number of known briny disk candidates to nine. Their kinematic structure is generally disk-like, though we are unable to determine whether they arise from a disk or outflow in the sources with new detections. We demonstrate that these species are spatially coincident in a few resolved cases and show that they are generally detected together, suggesting a common origin or excitation mechanism. We also show that several disks around HMYSOs clearly do not exhibit emission in these species. Salty disks are therefore neither particularly rare in high-mass disks, nor are they ubiquitous.

  • Disks and Outflows in the Intermediate-mass Star Forming Region NGC 2071 IR

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present ALMA band 6/7 (1.3 mm/0.87 mm) and VLA Ka band (9 mm) observations toward NGC 2071 IR, an intermediate-mass star forming region. We characterize the continuum and associated molecular line emission towards the most luminous protostars, i.e., IRS1 and IRS3, on ~100 au (0. 2") scales. IRS1 is partly resolved in millimeter and centimeter continuum, which shows a potential disk. IRS3 has a well resolved disk appearance in millimeter continuum and is further resolved into a close binary system separated by ~40 au at 9 mm. Both sources exhibit clear velocity gradients across their disk major axes in multiple spectral lines including C18O, H2CO, SO, SO2, and complex organic molecules like CH3OH, 13CH3OH and CH3OCHO. We use an analytic method to fit the Keplerian rotation of the disks, and give constraints on physical parameters with a MCMC routine. The IRS3 binary system is estimated to have a total mass of 1.4-1.5$M_\odot$. IRS1 has a central mass of 3-5$M_\odot$ based on both kinematic modeling and its spectral energy distribution, assuming that it is dominated by a single protostar. For both IRS1 and IRS3, the inferred ejection directions from different tracers, including radio jet, water maser, molecular outflow, and H2 emission, are not always consistent, and for IRS1, these can be misaligned by ~50$^{\circ}$. IRS3 is better explained by a single precessing jet. A similar mechanism may be present in IRS1 as well but an unresolved multiple system in IRS1 is also possible.

  • The Evolution of Protostellar Outflow Cavities, Kinematics, and Angular Distribution of Momentum and Energy in Orion A: Evidence for Dynamical Cores

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present Atacama Large Millimeter/submillimeter Array observations of the $\sim$10 kAU environment surrounding 21 protostars in the Orion A molecular cloud tracing outflows. Our sample is composed of Class 0 to flat-spectrum protostars, spanning the full $\sim$1 Myr lifetime. We derive the angular distribution of outflow momentum and energy profiles and obtain the first two-dimensional instantaneous mass, momentum, and energy ejection rate maps using our new approach: the Pixel Flux-tracing Technique (PFT). Our results indicate that by the end of the protostellar phase, outflows will remove $\sim$2 to 4 M$_\odot$ from the surrounding $\sim$1 M$_\odot$ low-mass core. These high values indicate that outflows remove a significant amount of gas from their parent cores and continuous core accretion from larger scales is needed to replenish core material for star formation. This poses serious challenges to the concept of ``cores as well-defined mass reservoirs", and hence to the simplified core-to-star conversion prescriptions. Furthermore, we show that cavity opening angles, and momentum and energy distributions all increase with the protostar evolutionary stage. This is clear evidence that even garden-variety protostellar outflows: (a) effectively inject energy and momentum into their environments on $10$ kAU scales, and (b) significantly disrupt their natal cores, ejecting a large fraction of the mass that would have otherwise fed the nascent star. Our results support the conclusion that protostellar outflows have a direct impact on how stars get their mass, and that the natal sites of individual low-mass star formation are far more dynamic than commonly accepted theoretical paradigms.

  • The Detection of Hot Molecular Cores in the Small Magellanic Cloud

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We report the first detection of hot molecular cores in the Small Magellanic Cloud, a nearby dwarf galaxy with 0.2 solar metallicity. We observed two high-mass young stellar objects in the SMC with ALMA, and detected emission lines of CO, HCO+, H13CO+, SiO, H2CO, CH3OH, SO, and SO2. Compact hot-core regions are traced by SO2, whose spatial extent is about 0.1 pc, and the gas temperature is higher than 100 K based on the rotation diagram analysis. In contrast, CH3OH, a classical hot-core tracer, is dominated by extended (0.2-0.3 pc) components in both sources, and the gas temperature is estimated to be 39+-8 K for one source. Protostellar outflows are also detected from both sources as high-velocity components of CO. The metallicity-scaled abundances of SO2 in hot cores are comparable among the SMC, LMC, and Galactic sources, suggesting that the chemical reactions leading to SO2 formation would be regulated by elemental abundances. On the other hand, CH3OH shows a large abundance variation within SMC and LMC hot cores. The diversity in the initial condition of star formation (e.g., degree of shielding, local radiation field strength) may lead to the large abundance variation of organic molecules in hot cores. This work, in conjunction with previous hot-core studies in the LMC and outer/inner Galaxy, suggests that the formation of a hot core would be a common phenomenon during high-mass star formation across the metallicity range of 0.2-1 solar metallicity. High-excitation SO2 lines will be a useful hot-core tracer in the low-metallicity environments of the SMC and LMC.

  • Disk Wind Feedback from High-mass Protostars. II. The Evolutionary Sequence

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Star formation is ubiquitously associated with the ejection of accretion-powered outflows that carve bipolar cavities through the infalling envelope. This feedback is expected to be important for regulating the efficiency of star formation from a natal pre-stellar core. These low-extinction outflow cavities greatly affect the appearance of a protostar by allowing the escape of shorter wavelength photons. Doppler-shifted CO line emission from outflows is also often the most prominent manifestation of deeply embedded early-stage star formation. Here, we present 3D magneto-hydrodynamic simulations of a disk wind outflow from a protostar forming from an initially $60\:M_\odot$ core embedded in a high pressure environment typical of massive star-forming regions. We simulate the growth of the protostar from $m_*=1\:M_\odot$ to $26\:M_\odot$ over a period of $\sim$100,000 years. The outflow quickly excavates a cavity with half opening angle of $\sim10^\circ$ through the core. This angle remains relatively constant until the star reaches $4\:M_\odot$. It then grows steadily in time, reaching a value of $\sim 50^\circ$ by the end of the simulation. We estimate a lower limit to the star formation efficiency (SFE) of 0.43. However, accounting for continued accretion from a massive disk and residual infall envelope, we estimate that the final SFE may be as high as $\sim0.7$. We examine observable properties of the outflow, especially the evolution of the cavity opening angle, total mass and momentum flux, and velocity distributions of the outflowing gas, and compare with the massive protostars G35.20-0.74N and G339.88-1.26 observed by ALMA, yielding constraints on their intrinsic properties.

  • Astrochemical Diagnostics of the Isolated Massive Protostar G28.20-0.05

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We study the astrochemical diagnostics of the isolated massive protostar G28.20-0.05. We analyze data from ALMA 1.3~mm observations with resolution of 0.2 arcsec ($\sim$1,000 au). We detect emission from a wealth of species, including oxygen-bearing (e.g., $\rm{H_2CO}$, $\rm{CH_3OH}$, $\rm{CH_3OCH_3}$), sulfur-bearing (SO$_2$, H$_2$S) and nitrogen-bearing (e.g., HNCO, NH$_2$CHO, C$_2$H$_3$CN, C$_2$H$_5$CN) molecules. We discuss their spatial distributions, physical conditions, correlation between different species and possible chemical origins. In the central region near the protostar, we identify three hot molecular cores (HMCs). HMC1 is part of a mm continuum ring-like structure, is closest in projection to the protostar, has the highest temperature of $\sim300\:$K, and shows the most line-rich spectra. HMC2 is on the other side of the ring, has a temperature of $\sim250\:$K, and is of intermediate chemical complexity. HMC3 is further away, $\sim3,000\:$au in projection, cooler ($\sim70\:$K) and is the least line-rich. The three HMCs have similar mass surface densities ($\sim10\:{\rm{g\:cm}}^{-2}$), number densities ($n_{\rm H}\sim10^9\:{\rm{cm}}^{-3}$) and masses of a few $M_\odot$. The total gas mass in the cores and in the region out to $3,000\:$au is $\sim 25\:M_\odot$, which is comparable to that of the central protostar. Based on spatial distributions of peak line intensities as a function of excitation energy, we infer that the HMCs are externally heated by the protostar. We estimate column densities and abundances of the detected species and discuss the implications for hot core astrochemistry.