您选择的条件: S. Li
  • ATOMS: ALMA Three-millimeter Observations of Massive Star-forming regions -XIII. Ongoing triggered star formation within clump-fed scenario found in the massive ($\sim1500$ $\rm M_\odot$) clump

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Whether ionization feedback triggers the formation of massive stars is highly debated. Using ALMA 3 mm observations with a spatial resolution of $\sim 0.05$ pc and a mass sensitivity of 1.1 $\rm M_\odot$ beam$^{-1}$ at 20 K, we investigate the star formation and gas flow structures within the ionizing feedback-driven structure, a clump-scale massive ($\gtrsim 1500$ $\rm M_\odot$) bright-rimmed cloud (BRC) associated with IRAS 18290-0924. This BRC is bound only if external compression from ionized gas is considered. A small-scale ($\lesssim1$ pc) age sequence along the direction of ionizing radiation is revealed for the embedded cores and protostars, which suggests triggered star formation via radiation-driven implosion (RDI). Furthermore, filamentary gas structures converge towards the cores located in the BRC's center, indicating that these filaments are fueling mass towards cores. The local core-scale mass infall rate derived from H$^{13}$CO$^+$ $J=1-0$ blue profile is of the same order of magnitude as the filamentary mass inflow rate, approximately 1 $\rm M_\odot$ kyr$^{-1}$. A photodissociation region (PDR) covering the irradiated clump surface is detected in several molecules, such as CCH, HCO$^+$, and CS whereas the spatial distribution stratification of these molecules is indistinct. CCH spectra of the PDR possibly indicate a photoevaporation flow leaving the clump surface with a projected velocity of $\sim2$ km s$^{-1}$. Our new observations show that RDI accompanied by a clump-fed process is operating in this massive BRC. Whether this combined process works in other massive BRCs is worth exploring with dedicated surveys.

  • Comparative Analysis of TRGBs (CATs) from Unsupervised, Multi-Halo-Field Measurements: Contrast is Key

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Tip of the Red Giant Branch (TRGB) is an apparent discontinuity in the color-magnitude diagram (CMD) along the giant branch due to the end of the red giant evolutionary phase and is used to measure distances in the local universe. In practice, the tip is often fuzzy and its localization via edge detection response (EDR) relies on several methods applied on a case-by-case basis. It is hard to evaluate how individual choices affect a distance estimation using only a single host field while also avoiding confirmation bias. To devise a standardized approach, we compare unsupervised, algorithmic analyses of the TRGB in multiple halo fields per galaxy, up to 11 fields for a single host and 50 fields across 10 galaxies, using high signal-to-noise stellar photometry obtained by the GHOSTS survey with the Hubble Space Telescope. We first optimize methods for the lowest field-to-field dispersion including spatial filtering to remove star forming regions, smoothing and weighting of the luminosity function, selection of the RGB by color, and tip selection based on the number of likely RGB stars and the ratio of stars above versus below the tip ($R$). We find $R$, which we call the tip `contrast', to be the most important indicator of the quality of EDR measurements; we find that field-to-field EDR repeatability varies from 0.3 mag to $\leq$ 0.05 mag for $R=4$ to 7, respectively, though less than half the fields reach the higher quality. Further, we find that $R$, which varies with the age/metallicity of the stellar population based on models, correlates with the magnitude of the tip (and after accounting for low internal extinction), i.e., a tip-contrast relation with slope of $-0.023\pm0.0046$ mag/ratio, a $\sim 5\sigma$ result that improves standardization of the TRGB. We discuss the value of consistent TRGB standardization across rungs for robust distance ladder measurements.

  • Comparative Analysis of TRGBs (CATs) from Unsupervised, Multi-Halo-Field Measurements: Contrast is Key

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Tip of the Red Giant Branch (TRGB) is an apparent discontinuity in the color-magnitude diagram (CMD) along the giant branch due to the end of the red giant evolutionary phase and is used to measure distances in the local universe. In practice, the tip is often fuzzy and its localization via edge detection response (EDR) relies on several methods applied on a case-by-case basis. It is hard to evaluate how individual choices affect a distance estimation using only a single host field while also avoiding confirmation bias. To devise a standardized approach, we compare unsupervised, algorithmic analyses of the TRGB in multiple halo fields per galaxy, up to 11 fields for a single host and 50 fields across 10 galaxies, using high signal-to-noise stellar photometry obtained by the GHOSTS survey with the Hubble Space Telescope. We first optimize methods for the lowest field-to-field dispersion including spatial filtering to remove star forming regions, smoothing and weighting of the luminosity function, selection of the RGB by color, and tip selection based on the number of likely RGB stars and the ratio of stars above versus below the tip ($R$). We find $R$, which we call the tip `contrast', to be the most important indicator of the quality of EDR measurements; we find that field-to-field EDR repeatability varies from 0.3 mag to $\leq$ 0.05 mag for $R=4$ to 7, respectively, though less than half the fields reach the higher quality. Further, we find that $R$, which varies with the age/metallicity of the stellar population based on models, correlates with the magnitude of the tip (and after accounting for low internal extinction), i.e., a tip-contrast relation with slope of $-0.023\pm0.0046$ mag/ratio, a $\sim 5\sigma$ result that improves standardization of the TRGB. We discuss the value of consistent TRGB standardization across rungs for robust distance ladder measurements.

  • Quasi-BIC laser enabled by high-contrast grating resonator for gas detection

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: In this work, we propose and numerically investigate a two-dimensional microlaser based on the concept of bound states in the continuum (BIC). The device consists of a thin gain layer (Rhodamine 6G dye-doped silica) sandwiched between two high-contrast-grating layers. The structure supports various BIC modes upon a proper choice of topological parameters; in particular it supports a high-Q quasi-BIC mode when partially breaking a bound state in the continuum at $\Gamma$ point. The optically-pumped gain medium provides sufficient optical gain to compensate the quasi-BIC mode losses, enabling lasing with ultra-low pump threshold (fluence of 17 $\mu$J/cm$^2$) and very narrow optical linewidth in the visible range. This innovative device displays distinguished sensing performance for gas detection, and the emission wavelength sensitively shifts to the longer wavelength with the changing of environment refractive index (in order of $5 \times 10^{-4}$). The achieved bulk sensitivity is 221 nm/RIU with a high signal to noise ratio, and a record-high figure of merit reaches to 4420 RIU$^{-1}$. This ultracompact and low threshold quasi-BIC laser facilitated by the ultra-narrow resonance can serve as formidable candidate for on-chip gas sensor.