您选择的条件: Michael Y. Grudic
  • What Causes The Formation of Disks and End of Bursty Star Formation?

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: As they grow, galaxies can transition from irregular/spheroidal with 'bursty' star formation histories (SFHs), to disky with smooth SFHs. But even in simulations, the direct physical cause of such transitions remains unclear. We therefore explore this in a large suite of numerical experiments re-running portions of cosmological simulations with widely varied physics, further validated with existing FIRE simulations. We show that gas supply, cooling/thermodynamics, star formation model, Toomre scale, galaxy dynamical times, and feedback properties do not have a direct causal effect on these transitions. Rather, both the formation of disks and cessation of bursty star formation are driven by the gravitational potential, but in different ways. Disk formation is promoted when the mass profile becomes sufficiently centrally-concentrated in shape (relative to circularization radii): we show that this provides a well-defined dynamical center, ceases to support the global 'breathing modes' which can persist indefinitely in less-concentrated profiles and efficiently destroy disks, promotes orbit mixing to form a coherent angular momentum, and stabilizes the disk. Smooth SF is promoted by the potential or escape velocity (not circular velocity) becoming sufficiently large at the radii of star formation that cool, mass-loaded (momentum-conserving) outflows are trapped/confined near the galaxy, as opposed to escaping after bursts. We discuss the detailed physics, how these conditions arise in cosmological contexts, their relation to other correlated phenomena (e.g. inner halo virialization, vertical disk 'settling'), and observations.

  • Novel Conservative Methods for Adaptive Force Softening in Collisionless and Multi-Species N-Body Simulations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Modeling self-gravity of collisionless fluids (e.g. ensembles of dark matter, stars, black holes, dust, planetary bodies) in simulations is challenging and requires some force softening. It is often desirable to allow softenings to evolve adaptively, in any high-dynamic range simulation, but this poses unique challenges of consistency, conservation, and accuracy, especially in multi-physics simulations where species with different 'softening laws' may interact. We therefore derive a generalized form of the energy-and-momentum conserving gravitational equations of motion, applicable to arbitrary rules used to determine the force softening, together with consistent associated timestep criteria, interaction terms between species with different softening laws, and arbitrary maximum/minimum softenings. We also derive new methods to maintain better accuracy and conservation when symmetrizing forces between particles. We review and extend previously-discussed adaptive softening schemes based on the local neighbor particle density, and present several new schemes for scaling the softening with properties of the gravitational field, i.e. the potential or acceleration or tidal tensor. We show that the 'tidal softening' scheme not only represents a physically-motivated, translation and Galilean invariant and equivalence-principle respecting (and therefore conservative) method, but imposes negligible timestep or other computational penalties, ensures that pairwise two-body scattering is small compared to smooth background forces, and can resolve outstanding challenges in properly capturing tidal disruption of substructures (minimizing artificial destruction) while also avoiding excessive N-body heating. We make all of this public in the GIZMO code.