您选择的条件: Chun-Sheng Luo
  • The correlation between WISE 12 $\mu$m emission and molecular gas tracers on sub-kpc scales in nearby star-forming galaxies

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We complement the MALATANG sample of dense gas in nearby galaxies with archival observations of $^{12}\rm CO$ and its isotopologues to determine scaling relations between Wide-field Infrared Survey Explorer (WISE) 12 $\mu$m emission and molecular gas tracers at sub-kiloparsec scales. We find that 12 $\mu$m luminosity is more tightly correlated with $^{12}\rm CO$ than it is with $^{13}\rm CO$ or dense gas tracers. Residuals between predicted and observed $^{12}\rm CO$ are only weakly correlated with molecular gas mass surface density ($\Sigma_{\rm mol}$) in regions where $\Sigma_{\rm mol}$ is very low ($\sim 10~{\rm M_{\odot}~pc^{-2}}$). Above this limit, the $^{12}\rm CO$ residuals show no correlations with physical conditions of molecular gas, while $^{13}\rm CO$ residuals depend on the gas optical depth and temperature. By analyzing differences from galaxy to galaxy, we confirm that the $^{12}\rm CO$-12 $\mu$m relation is strong and statistically robust with respect to star forming galaxies and AGN hosts. These results suggest that WISE 12 $\mu$m emission can be used to trace total molecular gas instead of dense molecular gas, likely because polycyclic aromatic hydrocarbons (PAHs, a major contributor to WISE 12 $\mu$m~emission) may be well-mixed with the gas that is traced by $^{12}\rm CO$. We propose that WISE 12 $\mu$m luminosity can be used to estimate molecular gas surface density for statistical analyses of the star formation process in galaxies.

  • The correlation between WISE 12 $\mu$m emission and molecular gas tracers on sub-kpc scales in nearby star-forming galaxies

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We complement the MALATANG sample of dense gas in nearby galaxies with archival observations of $^{12}\rm CO$ and its isotopologues to determine scaling relations between Wide-field Infrared Survey Explorer (WISE) 12 $\mu$m emission and molecular gas tracers at sub-kiloparsec scales. We find that 12 $\mu$m luminosity is more tightly correlated with $^{12}\rm CO$ than it is with $^{13}\rm CO$ or dense gas tracers. Residuals between predicted and observed $^{12}\rm CO$ are only weakly correlated with molecular gas mass surface density ($\Sigma_{\rm mol}$) in regions where $\Sigma_{\rm mol}$ is very low ($\sim 10~{\rm M_{\odot}~pc^{-2}}$). Above this limit, the $^{12}\rm CO$ residuals show no correlations with physical conditions of molecular gas, while $^{13}\rm CO$ residuals depend on the gas optical depth and temperature. By analyzing differences from galaxy to galaxy, we confirm that the $^{12}\rm CO$-12 $\mu$m relation is strong and statistically robust with respect to star forming galaxies and AGN hosts. These results suggest that WISE 12 $\mu$m emission can be used to trace total molecular gas instead of dense molecular gas, likely because polycyclic aromatic hydrocarbons (PAHs, a major contributor to WISE 12 $\mu$m~emission) may be well-mixed with the gas that is traced by $^{12}\rm CO$. We propose that WISE 12 $\mu$m luminosity can be used to estimate molecular gas surface density for statistical analyses of the star formation process in galaxies.