您选择的条件: Jiong Qiu
  • Properties and Energetics of Magnetic Reconnection: I. Evolution of Flare Ribbons

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In this article, we measure the mean magnetic shear from the morphological evolution of flare ribbons, and examine the evolution of flare thermal and non-thermal X-ray emissions during the progress of flare reconnection. We analyze three eruptive flares and three confined flares ranging from GOES class C8.0 to M7.0. They exhibit well-defined two ribbons along the magnetic polarity inversion line (PIL), and have been observed by the Atmospheric Imaging Assembly and the Ramaty High Energy Solar Spectroscopic Imager from the onset of the flare throughout the impulsive phase. The analysis confirms the strong-to-weak shear evolution in the core region of the flare, and the flare hard X-ray emission rises as the shear decreases. In eruptive flares in this sample, significant non-thermal hard X-ray emission lags the ultraviolet emission from flare ribbons, and rises rapidly when the shear is modest. In all flares, we observe that the plasma temperature rises in the early phase when the flare ribbons rapidly spread along the PIL and the shear is high. We compare these results with prior studies, and discuss their implications, as well as complications, related to physical mechanisms governing energy partition during flare reconnection.

  • Investigating pre-eruptive magnetic properties at the footprints of erupting magnetic flux ropes

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: It is well established that solar eruptions are powered by free magnetic energy stored in current-carrying magnetic field in the corona. It has also been generally accepted that magnetic flux ropes (MFRs) are a critical component of many coronal mass ejections (CMEs). What remains controversial is whether MFRs are present well before the eruption. Our aim is to identify progenitors of MFRs, and investigate pre-eruptive magnetic properties associated with these progenitors. Here we analyze 28 MFRs erupting within 45 deg from the disk center from 2010 to 2015. All MFRs'feet are well identified by conjugate coronal dimmings. We then calculate magnetic properties at the feet of the MFRs, prior to their eruptions, using Helioseismic and Magnetic Imager (HMI) vector magnetograms. Our results show that only 8 erupting MFRs are associated with significant non-neutralized electric currents, 4 of which also exhibit pre-eruptive dimmings at the foot-prints. Twist and current distributions are asymmetric at the two feet of these MFRs. The presence of pre-eruption dimmings associated with non-neutralized currents suggests the pre-existing MFRs. Furthermore, evolution of conjugate dimmings and electric currents within the foot-prints can provide clues about the internal structure of MFRs and their formation mechanism.

  • Validation and interpretation of three-dimensional configuration of a magnetic cloud flux rope

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: One "strong" magnetic cloud (MC) with the magnetic field magnitude reaching $\sim$ 40 nT at 1 au during 2012 June 16-17 is examined in association with a pre-existing magnetic flux rope (MFR) identified on the Sun. The MC is characterized by a quasi-three dimensional (3D) flux rope model based on in situ measurements from the Wind spacecraft. The magnetic flux contents and other parameters are quantified. In addition, a correlative study with the corresponding measurements of the same structure crossed by the Venus Express (VEX) spacecraft at a heliocentric distance 0.7 au and with an angular separation $\sim 6^\circ$ in longitude is performed to validate the MC modeling results. The spatial variation between the Wind and VEX magnetic field measurements is attributed to the 3D configuration of the structure as featured by a knotted bundle of flux. The comparison of the magnetic flux contents between the MC and the source region on the Sun indicates that the 3D reconnection process accompanying an M1.9 flare may correspond to the magnetic reconnection between the field lines of the pre-existing MFR rooted in the opposite polarity footpoints. Such a process reduces the amount of the axial magnetic flux in the erupted flux rope, by approximately 50\%, in this case.

  • Investigating pre-eruptive magnetic properties at the footprints of erupting magnetic flux ropes

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: It is well established that solar eruptions are powered by free magnetic energy stored in current-carrying magnetic field in the corona. It has also been generally accepted that magnetic flux ropes (MFRs) are a critical component of many coronal mass ejections (CMEs). What remains controversial is whether MFRs are present well before the eruption. Our aim is to identify progenitors of MFRs, and investigate pre-eruptive magnetic properties associated with these progenitors. Here we analyze 28 MFRs erupting within 45 deg from the disk center from 2010 to 2015. All MFRs'feet are well identified by conjugate coronal dimmings. We then calculate magnetic properties at the feet of the MFRs, prior to their eruptions, using Helioseismic and Magnetic Imager (HMI) vector magnetograms. Our results show that only 8 erupting MFRs are associated with significant non-neutralized electric currents, 4 of which also exhibit pre-eruptive dimmings at the foot-prints. Twist and current distributions are asymmetric at the two feet of these MFRs. The presence of pre-eruption dimmings associated with non-neutralized currents suggests the pre-existing MFRs. Furthermore, evolution of conjugate dimmings and electric currents within the foot-prints can provide clues about the internal structure of MFRs and their formation mechanism.

  • Development of Integral Field Spectrographs to Revolutionize Spectroscopic Observations of Solar Flares and other Energetic Solar Eruptions

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Sun's proximity offers us a unique opportunity to study in detail the physical processes on a star's surface; however, the highly dynamic nature of the stellar surface -- in particular, energetic eruptions such as flares and coronal mass ejections -- presents tremendous observational challenges. Spectroscopy probes the physical state of the solar atmosphere, but conventional scanning spectrographs and spectrometers are unable to capture the full evolutionary history of these dynamic events with a sufficiently wide field of view and high spatial, spectral, and temporal resolution. Resolving the physics of the dynamic sun requires gathering simultaneous spectra across a contiguous area over the full duration of these events, a goal now tantalizingly close to achievable with continued investment in developing powerful new Integral Field Spectrographs to serve as the foundation of both future ground- and space-based missions. This technology promises to revolutionize our ability to study solar flares and CMEs, addressing NASA's strategic objective to "understand the Sun, solar system, and universe." Since such events generate electromagnetic radiation and high-energy particles that disrupt terrestrial electric infrastructure, this investment not only advances humanity's scientific endeavors but also enhances our space weather forecasting capability to protect against threats to our technology-reliant civilization.

  • Quantitative Characterization of Magnetic Flux Rope Properties for Two Solar Eruption Events

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In order to bridge the gap between heliospheric and solar observations of coronal mass ejections (CMEs), one of the key steps is to improve the understanding of their corresponding magnetic structures like the magnetic flux ropes (MFRs). But it remains a challenge to confirm the existence of a coherent MFR before or upon the CME eruption on the Sun and to quantitatively characterize the CME-MFR due to the lack of direct magnetic field measurement in the corona. In this study, we investigate the MFR structures, originating from two active regions (ARs), AR 11719 and AR 12158, and estimate their magnetic properties quantitatively. We perform the nonlinear force-free field extrapolations with preprocessed photospheric vector magnetograms. In addition, remote-sensing observations are employed to find indirect evidence of MFRs on the Sun and to analyze the time evolution of magnetic reconnection flux associated with the flare ribbons during the eruption. A coherent "pre-existing" MFR structure prior to the flare eruption is identified quantitatively for one event from the combined analysis of the extrapolation and observation. Then the characteristics of MFRs for two events on the Sun before and during the eruption, forming the CME-MFR, including the axial magnetic flux, field-line twist, and reconnection flux, are estimated and compared with the corresponding in situ modeling results. We find that the magnetic reconnection associated with the accompanying flares for both events injects significant amount of flux into the erupted CME-MFRs.