按提交时间
按主题分类
按作者
按机构
您选择的条件: Joshua D. Simon
  • A non-interacting Galactic black hole candidate in a binary system with a main-sequence star

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We describe the discovery of a solar neighborhood ($d=474$~pc) binary system consisting of a main-sequence sunlike star and a massive non-interacting black hole candidate. We selected this system from the \textit{Gaia} DR3 binary catalog based on its high mass ratio and location close to the main sequence. The spectral energy distribution (SED) of the visible star is well described by a single stellar model, indicating that no contribution from another luminous source is needed to fit the observed photometry. We derive stellar parameters from a high S/N Magellan/MIKE spectrum, classifying the star as a main-sequence star with $T_{\rm eff} = 5972~\rm K$, $\log{g} = 4.54$, and $M = 0.91$~\msun. The spectrum also shows no indication of a second luminous component. We have measured radial velocities of this system with the Automated Planet Finder, Magellan, and Keck over the past three months, which we use to determine the spectroscopic orbit of the binary. We show that the velocity data are consistent with the \textit{Gaia} astrometric orbit and provide independent evidence for a massive dark companion. From a combined fit of the astrometric and spectroscopic data, we derive a companion mass of $11.9^{+2.0}_{-1.6}$\msun. We conclude that this binary system harbors a massive black hole on an eccentric $(e =0.45 \pm 0.02)$, long-period ($185.4 \pm 0.1$ d) orbit. The main-sequence star that orbits this black hole is moderately metal-poor ($\mbox{[Fe/H]} = -0.30$), on a Galactic orbit similar to thin disk stars. Our conclusions are independent of \cite{ElBadry2022Disc}, who recently reported the discovery of the same system, and find a marginally lower companion mass than we do here.

  • Chemical Abundances of the Typhon Stellar Stream

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present the first high-resolution chemical abundances of seven stars in the recently discovered high-energy stream Typhon. Typhon stars have apocenters >100 kpc, making this the first detailed chemical picture of the Milky Way's very distant stellar halo. Though the sample size is limited, we find that Typhon's chemical abundances are more like a dwarf galaxy than a globular cluster, showing a metallicity dispersion and no presence of multiple stellar populations. Typhon stars display enhanced $\alpha$-element abundances and increasing r-process abundances with increasing metallicity. The high-$\alpha$ abundances suggest a short star formation duration for Typhon, but this is at odds with expectations for the distant Milky Way halo and the presence of delayed r-process enrichment. If the progenitor of Typhon is indeed a new dwarf galaxy, possible scenarios explaining this apparent contradiction include a dynamical interaction that increases Typhon's orbital energy, a burst of enhanced late-time star formation that raises [$\alpha$/Fe], and/or group preprocessing by another dwarf galaxy before infall into the Milky Way. Alternatively, Typhon could be the high-energy tail of a more massive disrupted dwarf galaxy that lost energy through dynamical friction. We cannot clearly identify a known low-energy progenitor of Typhon in the Milky Way, but 70% of high-apocenter stars in cosmological simulations are from high-energy tails of large dwarf galaxies. Typhon's surprising combination of kinematics and chemistry thus underscores the need to fully characterize the dynamical history and detailed abundances of known substructures before identifying the origin of new substructures.

  • Spectroscopic analysis of Milky Way outer halo satellites: Aquarius II and Bootes II

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In this paper we present a chemical and kinematic analysis of two ultra-faint dwarf galaxies (UFDs), Aquarius II (Aqu~II) and \text{Bo\"{o}tes II} (Boo~II), using Magellan/IMACS spectroscopy. We present the largest sample of member stars for Boo~II (12), and the largest sample of red-giant-branch members with metallicity measurements for Aqu~II (8). In both UFDs, over 80\% of targets selected based on $Gaia$ proper motions turned out to be spectroscopic members. In order to maximize the accuracy of stellar kinematic measurements, we remove the identified binary stars and RR Lyrae variables. For Aqu~II we measure a systemic velocity of $-65.3 \pm 1.8$ km s$^{-1}$ and a metallicity of [Fe/H] = $-2.57^{+0.17}_{-0.17}$. When compared with previous measurements, these values display a $\sim 6$ km s$^{-1}$ difference in radial velocity and a decrease of 0.27 dex in metallicity. Similarly for Boo~II, we measure a systemic velocity of $-130.4^{+1.4}_{-1.1}$ km s$^{-1}$, more than 10 km s$^{-1}$ different from the literature, a metallicity almost 1 dex smaller at [Fe/H] = $-2.71^{+0.11}_{-0.10}$, and a velocity dispersion 3 times smaller at $\sigma_{v_{\rm hel}} = 2.9^{+1.6}_{-1.2}$ km s$^{-1}$. Additionally, we derive systemic proper motion parameters and model the orbits of both UFDs. Finally, we highlight the extremely dark matter dominated nature of Aqu~II and compute the J-factor for both galaxies to aid searches of dark matter annihilation. Despite the small size and close proximity of Boo~II, it is an intermediate target for the indirect detection of dark matter annihilation due to its low velocity dispersion and corresponding low dark matter density.

  • Metal Mixing in the R-Process Enhanced Ultra-Faint Dwarf Galaxy Reticulum II

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The ultra-faint dwarf galaxy Reticulum~II was enriched by a single rare and prolific r-process event. The r-process content of Reticulum~II thus provides a unique opportunity to study metal mixing in a relic first galaxy. Using multi-object high-resolution spectroscopy with VLT/GIRAFFE and Magellan/M2FS, we identify 32 clear spectroscopic member stars and measure abundances of Mg, Ca, Fe, and Ba where possible. We find $72^{+10}_{-12}$% of the stars are r-process-enhanced, with a mean $\left\langle\mbox{[Ba/H]}\right\rangle=-1.68~\pm~0.07$ and unresolved intrinsic dispersion $\sigma_{\rm [Ba/H]} < 0.20$. The homogeneous r-process abundances imply that Ret~II's metals are well-mixed by the time the r-enhanced stars form, which simulations have shown requires at least 100 Myr of metal mixing in between bursts of star formation to homogenize. This is the first direct evidence of bursty star formation in an ultra-faint dwarf galaxy. The homogeneous dilution prefers a prompt and high-yield r-process site, such as collapsar disk winds or prompt neutron star mergers. We also find evidence from [Ba/H] and [Mg/Ca] that the r-enhanced stars in Ret~II formed in the absence of substantial pristine gas accretion, perhaps indicating that ${\approx}70$% of Ret~II stars formed after reionization.

  • Timing the r-Process Enrichment of the Ultra-Faint Dwarf Galaxy Reticulum II

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The ultra-faint dwarf galaxy Reticulum II (Ret II) exhibits a unique chemical evolution history, with 72 +10/-12% of its stars strongly enhanced in r-process elements. We present deep Hubble Space Telescope photometry of Ret II and analyze its star formation history. As in other ultra-faint dwarfs, the color-magnitude diagram is best fit by a model consisting of two bursts of star formation. If we assume that the bursts were instantaneous, then the older burst occurred around the epoch of reionization and formed ~80% of the stars in the galaxy, while the remainder of the stars formed ~3 Gyr later. When the bursts are allowed to have nonzero durations we obtain slightly better fits. The best-fitting model in this case consists of two bursts beginning before reionization, with approximately half the stars formed in a short (100 Myr) burst and the other half in a more extended period lasting 2.6 Gyr. Considering the full set of viable star formation history models, we find that 28% of the stars formed within 500 +/- 200 Myr of the onset of star formation. The combination of the star formation history and the prevalence of r-process-enhanced stars demonstrates that the r-process elements in Ret II must have been synthesized early in its initial star-forming phase. We therefore constrain the delay time between the formation of the first stars in Ret II and the r-process nucleosynthesis to be less than 500 Myr. This measurement rules out an r-process source with a delay time of several Gyr or more such as GW170817.

  • Magellan/IMACS spectroscopy of Grus I: A low metallicity ultra-faint dwarf galaxy

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present a chemodynamical study of the Grus I ultra-faint dwarf galaxy (UFD) from medium-resolution ($R\sim11,000$) Magellan/IMACS spectra of its individual member stars. We identify eight confirmed members of Grus I, based on their low metallicities and coherent radial velocities, and four candidate members for which only velocities are derived. In contrast to previous work, we find that Grus I has a very low mean metallicity of $\langle$[Fe/H]$\rangle = -2.62 \pm 0.11$ dex, making it one of the most metal-poor UFDs. Grus I has a systemic radial velocity of $-143.5\pm1.2$ km s$^{-1}$ and a velocity dispersion of $\sigma_{\text{rv}} = 2.5^{+1.3}_{-0.8}$ km s$^{-1}$ which results in a dynamical mass of $M_{1/2} (r_h) = 8^{+12}_{-4} \times 10^5$ M$_{\odot}$ and a mass-to-light ratio of M/L$_V$ = $440^{+650}_{-250}$ M$_\odot$/L$_\odot$. Under the assumption of dynamical equilibrium, our analysis confirms that Grus I is a dark-matter-dominated UFD (M/L $> 80$ M$_\odot$/L$_\odot$). However, we do not resolve a metallicity dispersion ($\sigma_{\text{[Fe/H]}} < 0.44$ dex). Our results indicate that Grus I is a fairly typical UFD with parameters that agree with mass-metallicity and metallicity-luminosity trends for faint galaxies. This agreement suggests that Grus I has not lost an especially significant amount of mass from tidal encounters with the Milky Way, in line with its orbital parameters. Intriguingly, Grus I has among the lowest central density ($\rho_{1/2} \sim 3.5_{-2.1}^{+5.7} \times 10^7$ M$_\odot$ kpc$^{-3}$) of the UFDs that are not known to be tidally disrupting. Models of the formation and evolution of UFDs will need to explain the diversity of these central densities, in addition to any diversity in the outer regions of these relic galaxies.

  • HI mapping of the Leo Triplet: Morphologies and kinematics of tails and bridges

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: A fully-sampled and hitherto highest resolution and sensitivity observation of neutral hydrogen (HI) in the Leo Triplet (NGC 3628, M 65/NGC 3623, and M 66/NGC 3627) reveals six HI structures beyond the three galaxies. We present detailed results of the morphologies and kinematics of these structures, which can be used for future simulations. In particular, we detect a two-arm structure in the plume of NGC 3628 for the first time, which can be explained by a tidal interaction model. The optical counterpart of the plume is mainly associated with the southern arm. The connecting part (base) of the plume (directed eastwards) with NGC 3628 is located at the blueshifted (western) side of NGC 3628. Two bases appear to be associated with the two arms of the plume. A clump with reversed velocity gradient (relative to the velocity gradient of M 66) and a newly detected tail, i.e. M 66SE, is found in the southeast of M 66. We suspect that M 66SE represents gas from NGC 3628 which was captured by M 66 in the recent interaction between the two galaxies. Meanwhile gas is falling toward M 66, resulting in features already previously observed in the southeastern part of M 66, e.g. large line widths and double peaks. An upside-down `Y'-shaped HI gas component (M 65S) is detected in the south of M 65 which suggests that M 65 may also have been involved in the interaction. We strongly encourage modern hydrodynamical simulations of this interacting group of galaxies to reveal the origin of the gaseous debris surrounding all three galaxies.

  • Report of the Topical Group on Cosmic Probes of Dark Matter for Snowmass 2021

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Cosmological and astrophysical observations currently provide the only robust, positive evidence for dark matter. Cosmic probes of dark matter, which seek to determine the fundamental properties of dark matter through observations of the cosmos, have emerged as a promising means to reveal the nature of dark matter. This report summarizes the current status and future potential of cosmic probes to inform our understanding of the fundamental nature of dark matter in the coming decade.

  • Detailed chemical abundances of stars in the outskirts of the Tucana II ultra-faint dwarf galaxy

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present chemical abundances and velocities of five stars between 0.3 kpc to 1.1 kpc from the center of the Tucana II ultra-faint dwarf galaxy (UFD) from high-resolution Magellan/MIKE spectroscopy. We find that every star is deficient in metals (-3.6 < [Fe/H] < -1.9) and in neutron-capture elements as is characteristic of UFD stars, unambiguously confirming their association with Tucana II. Other chemical abundances (e.g., C, iron-peak) largely follow UFD trends and suggest that faint core-collapse supernovae (SNe) dominated the early evolution of Tucana II. We see a downturn in [$\alpha$/Fe] at [Fe/H] $\approx -2.8$, indicating the onset of Type Ia SN enrichment and somewhat extended chemical evolution. The most metal-rich star has strikingly low [Sc/Fe] = $-1.29 \pm 0.48$ and [Mn/Fe] = $-1.33 \pm 0.33$, implying significant enrichment by a sub-Chandrasekhar mass Type Ia SN. We do not detect a radial velocity gradient in Tucana II ($\text{d}v_{\text{helio}}/\text{d}\theta_1=-2.6^{+3.0}_{-2.9}$ km s$^{-1}$ kpc$^{-1}$) reflecting a lack of evidence for tidal disruption, and derive a dynamical mass of $M_{1/2} (r_h) = 1.6^{+1.1}_{-0.7}\times 10^6$ M$_{\odot}$. We revisit formation scenarios of the extended component of Tucana II in light of its stellar chemical abundances. We find no evidence that Tucana II had abnormally energetic SNe, suggesting that if SNe drove in-situ stellar halo formation then other UFDs should show similar such features. Although not a unique explanation, the decline in [$\alpha$/Fe] is consistent with an early galactic merger triggering later star formation. Future observations may disentangle such formation channels of UFD outskirts.