您选择的条件: Shigeki Inoue
  • UV & Ly$\alpha$ halos of Ly$\alpha$ emitters across environments at z=2.84

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present UV and Ly$\alpha$ radial surface brightness (SB) profiles of Ly$\alpha$ emitters (LAEs) at $z=2.84$ detected with the Hyper Suprime-Cam (HSC) on the Subaru Telescope. The depth of our data, together with the wide field coverage including a protocluster, enable us to study the dependence of Ly$\alpha$ halos (LAHs) on various galaxy properties, including Mpc-scale environments. UV and Ly$\alpha$ images of 3490 LAEs are extracted, and stacking the images yields SB sensitivity of $\sim1\times10^{-20}\mathrm{~erg~s^{-1}~cm^{-2}~arcsec^{-2}}$ in Ly$\alpha$, reaching the expected level of optically thick gas illuminated by the UV background at $z\sim3$. Fitting of the two-component exponential function gives the scale-lengths of $1.56\pm0.01$ and $10.4\pm0.3$ pkpc. Dividing the sample according to their photometric properties, we find that while the dependence of halo scale-length on environment outside of the protocluster core is not clear, LAEs in the central regions of protoclusters appear to have very large LAHs which could be caused by combined effects of source overlapping and diffuse Ly$\alpha$ emission from cool intergalactic gas permeating the forming protocluster core irradiated by active members. For the first time, we identify ``UV halos'' around bright LAEs which are probably due to a few lower-mass satellite galaxies. Through comparison with recent numerical simulations, we conclude that, while scattered Ly$\alpha$ photons from the host galaxies are dominant, star formation in satellites evidently contributes to LAHs, and that fluorescent Ly$\alpha$ emission may be boosted within protocluster cores at cosmic noon and/or near bright QSOs.

  • EMPRESS. XI. SDSS and JWST Search for Local and z~4-5 Extremely Metal-Poor Galaxies (EMPGs): Clustering and Chemical Properties of Local EMPGs

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We search for local extremely metal-poor galaxies (EMPGs), selecting photometric candidates by broadband color excess and machine-learning techniques with the SDSS photometric data. After removing stellar contaminants by shallow spectroscopy with Seimei and Nayuta telescopes, we confirm that three candidates are EMPGs with 0.05--0.1 $Z_\odot$ by deep Magellan/MagE spectroscopy for faint {\sc[Oiii]}$\lambda$4363 lines. Using a statistical sample consisting of 105 spectroscopically-confirmed EMPGs taken from our study and the literature, we calculate cross-correlation function (CCF) of the EMPGs and all SDSS galaxies to quantify environments of EMPGs. Comparing another CCF of all SDSS galaxies and comparison SDSS galaxies in the same stellar mass range ($10^{7.0}-10^{8.4} M_\odot$), we find no significant ($>1\sigma$) difference between these two CCFs. We also compare mass-metallicity relations (MZRs) of the EMPGs and those of galaxies at $z\sim$ 0--4 with a steady chemical evolution model and find that the EMPG MZR is comparable with the model prediction on average. These clustering and chemical properties of EMPGs are explained by a scenario of stochastic metal-poor gas accretion on metal-rich galaxies showing metal-poor star formation. Extending the broadband color-excess technique to a high-$z$ EMPG search, we select 17 candidates of $z\sim$ 4--5 EMPGs with the deep ($\simeq30$ mag) near-infrared JWST/NIRCam images obtained by ERO and ERS programs. We find galaxy candidates with negligible {\sc[Oiii]}$\lambda\lambda$4959,5007 emission weaker than the local EMPGs and known high-$z$ galaxies, suggesting that some of these candidates may fall in 0--0.01 $Z_\odot$, which potentially break the lowest metallicity limit known to date.