您选择的条件: Anowar J. Shajib
  • TDCOSMO. XIII. Improved Hubble constant measurement from lensing time delays using spatially resolved stellar kinematics of the lens galaxy

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Strong-lensing time delays enable measurement of the Hubble constant ($H_{0}$) independently of other traditional methods. The main limitation to the precision of time-delay cosmography is mass-sheet degeneracy (MSD). Some of the previous TDCOSMO analyses broke the MSD by making standard assumptions about the mass density profile of the lens galaxy, reaching 2% precision from seven lenses. However, this approach could potentially bias the $H_0$ measurement or underestimate the errors. In this work, for the first time, we break the MSD using spatially resolved kinematics of the lens galaxy in RXJ1131$-$1231 obtained from the Keck Cosmic Web Imager spectroscopy, in combination with previously published time delay and lens models derived from Hubble Space Telescope imaging. This approach allows us to robustly estimate $H_0$, effectively implementing a maximally flexible mass model. Following a blind analysis, we estimate the angular diameter distance to the lens galaxy $D_{\rm d} = 865_{-81}^{+85}$ Mpc and the time-delay distance $D_{\Delta t} = 2180_{-271}^{+472}$ Mpc, giving $H_0 = 77.1_{-7.1}^{+7.3}$ km s$^{-1}$ Mpc$^{-1}$ - for a flat $\Lambda$ cold dark matter cosmology. The error budget accounts for all uncertainties, including the MSD inherent to the lens mass profile and the line-of-sight effects, and those related to the mass-anisotropy degeneracy and projection effects. Our new measurement is in excellent agreement with those obtained in the past using standard simply parametrized mass profiles for this single system ($H_0 = 78.3^{+3.4}_{-3.3}$ km s$^{-1}$ Mpc$^{-1}$) and for seven lenses ($H_0 = 74.2_{-1.6}^{+1.6}$ km s$^{-1}$ Mpc$^{-1}$), or for seven lenses using single-aperture kinematics and the same maximally flexible models used by us ($H_0 = 73.3^{+5.8}_{-5.8}$ km s$^{-1}$ Mpc$^{-1}$). This agreement corroborates the methodology of time-delay cosmography.

  • Strong lensing selection effects

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Context. Strong lenses are a biased subset of the general population of galaxies. Aims. The goal of this work is to quantify how lens galaxies and lensed sources differ from their parent distribution, namely the strong lensing bias. Methods. We first studied how the strong lensing cross-section varies as a function of lens and source properties. Then, we simulated strong lensing surveys with data similar to that expected for Euclid and measured the strong lensing bias in different scenarios. We focused particularly on two quantities: the stellar population synthesis mismatch parameter, $\alpha_{sps}$, defined as the ratio between the true stellar mass of a galaxy and the stellar mass obtained from photometry, and the central dark matter mass at fixed stellar mass and size. Results. Strong lens galaxies are biased towards larger stellar masses, smaller half-mass radii and larger dark matter masses. The amplitude of the bias depends on the intrinsic scatter in the mass-related parameters of the galaxy population and on the completeness in Einstein radius of the lens sample. For values of the scatter that are consistent with observed scaling relations and a minimum detectable Einstein radius of $0.5''$, the strong lensing bias in $\alpha_{sps}$ is $10\%$, while that in the central dark matter mass is $5\%$. The bias has little dependence on the properties of the source population: samples of galaxy-galaxy lenses and galaxy-quasar lenses that probe the same Einstein radius distribution are biased in a very similar way. Quadruply imaged quasar lenses, however, are biased towards higher ellipticity galaxies. Conclusions. Given current uncertainties, strong lensing observations can be used directly to improve our current knowledge of the inner structure of galaxies, without the need to correct for selection effects.

  • Improved time-delay lens modelling and $H_0$ inference with transient sources

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Strongly lensed explosive transients such as supernovae, gamma-ray bursts, fast radio bursts, and gravitational waves are very promising tools to determine the Hubble constant ($H_0$) in the near future in addition to strongly lensed quasars. In this work, we show that the transient nature of the point source provides an advantage over quasars: the lensed host galaxy can be observed before or after the transient's appearance. Therefore, the lens model can be derived from images free of contamination from bright point sources. We quantify this advantage by comparing the precision of a lens model obtained from the same lenses with and without point sources. Based on Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) observations with the same sets of lensing parameters, we simulate realistic mock datasets of 48 quasar lensing systems (i.e., adding AGN in the galaxy center) and 48 galaxy-galaxy lensing systems (assuming the transient source is not visible but the time delay and image positions have been or will be measured). We then model the images and compare the inferences of the lens model parameters and $H_0$. We find that the precision of the lens models (in terms of the deflector mass slope) is better by a factor of 4.1 for the sample without lensed point sources, resulting in an increase of $H_0$ precision by a factor of 2.9. The opportunity to observe the lens systems without the transient point sources provides an additional advantage for time-delay cosmography over lensed quasars. It facilitates the determination of higher signal-to-noise stellar kinematics of the main deflector, and thus its mass density profile, which in turn plays a key role in breaking the mass-sheet degeneracy and constraining $H_0$.