您选择的条件: Qian-Hui Chen
  • Metallicity Gradient of Barred Galaxies with TYPHOON

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Bars play an important role in mixing material in the inner regions of galaxies and stimulating radial migration. Previous observations have found evidence for the impact of a bar on metallicity gradients but the effect is still inconclusive. We use the TYPHOON/PrISM survey to investigate the metallicity gradients along and beyond the bar region across the entire star-forming disk of five nearby galaxies. Using emission line diagrams to identify star-forming spaxels, we recover the global metallicity gradients ranging from -0.0162 to -0.073 dex/kpc with evidence that the galactic bars act as an agent in affecting in-situ star formation as well as the motions of gas and stars. We observe cases with a `shallow-steep' metallicity radial profile, with evidence of the bar flattening the metallicity gradients inside the bar region (NGC~5068 and NGC~1566) and also note instances where the bar appears to drive a steeper metallicity gradient producing `steep-shallow' metallicity profiles (NGC~1365 and NGC~1744). For NGC~2835, a `steep-shallow' metallicity gradient break occurs at a distance $\sim$ 4 times the bar radius, which is more likely driven by gas accretion to the outskirt of the galaxy instead of the bar. The variation of metallicity gradients around the bar region traces the fluctuations of star formation rate surface density in NGC~1365, NGC~1566 and NGC~1744. A larger sample combined with hydrodynamical simulations is required to further explore the diversity and the relative importance of different ISM mixing mechanisms on the gas-phase metallicity gradients in local galaxies.

  • Gas-phase metallicity break radii of star-forming galaxies in IllustrisTNG

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present radial gas-phase metallicity profiles, gradients, and break radii at redshift $z = 0 - 3$ from the TNG50-1 star-forming galaxy population. These metallicity profiles are characterized by an emphasis on identifying the steep inner gradient and flat outer gradient. From this, the break radius, $r_{\rm Break}$, is defined as the region where the transition occurs. We observe the break radius having a positive trend with mass that weakens with redshift. When normalized by the stellar half-mass radius, the break radius has a weaker relation with both mass and redshift. To test if our results are dependent on the resolution or adopted physics of TNG50-1, the same analysis is performed in TNG50-2 and Illustris-1. We find general agreement between each of the simulations in their qualitative trends; however, the adopted physics between TNG and Illustris differ and therefore the breaks, normalized by galaxy size, deviate by a factor of $\sim$2. In order to understand where the break comes from, we define two relevant time-scales: an enrichment time-scale and a radial gas mixing time-scale. We find that $r_{\rm Break}$ occurs where the gas mixing time-scale is $\sim$10 times as long as the enrichment time-scale in all three simulation runs, with some weak mass and redshift dependence. This implies that galactic disks can be thought of in two-parts: a star-forming inner disk with a steep gradient and a mixing-dominated outer disk with a flat gradient, with the break radius marking the region of transition between them.