您选择的条件: Jessica R. Lu
  • The Star Formation History of the Milky Way's Nuclear Star Cluster

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We report the first star formation history study of the Milky Way's nuclear star cluster (NSC) that includes observational constraints from a large sample of stellar metallicity measurements. These metallicity measurements were obtained from recent surveys from Gemini and VLT of 770 late-type stars within the central 1.5 pc. These metallicity measurements, along with photometry and spectroscopically derived temperatures, are forward modeled with a Bayesian inference approach. Including metallicity measurements improves the overall fit quality, as the low-temperature red giants that were previously difficult to constrain are now accounted for, and the best fit favors a two-component model. The dominant component contains 93%$\pm$3% of the mass, is metal-rich ($\overline{[M/H]}\sim$0.45), and has an age of 5$^{+3}_{-2}$ Gyr, which is $\sim$3 Gyr younger than earlier studies with fixed (solar) metallicity; this younger age challenges co-evolutionary models in which the NSC and supermassive black holes formed simultaneously at early times. The minor population component has low metallicity ($\overline{[M/H]}\sim$ -1.1) and contains $\sim$7% of the stellar mass. The age of the minor component is uncertain (0.1 - 5 Gyr old). Using the estimated parameters, we infer the following NSC stellar remnant population (with $\sim$18% uncertainty): 1.5$\times$10$^5$ neutron stars, 2.5$\times$10$^5$ stellar mass black holes (BHs) and 2.2$\times$10$^4$ BH-BH binaries. These predictions result in 2-4 times fewer neutron stars compared to earlier predictions that assume solar metallicity, introducing a possible new path to understand the so-called "missing pulsar problem". Finally, we present updated predictions for the BH-BH merger rates (0.01-3 Gpc$^{-3}$yr$^{-1}$).

  • Stellar Populations in the Central 0.5 pc of Our Galaxy III: The Dynamical Sub-structures

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We measure the 3D kinematic structures of the young stars within the central 0.5 parsec of our Galactic Center using the 10 m telescopes of the W.~M.~Keck Observatory over a time span of 25 years. Using high-precision measurements of positions on the sky, and proper motions and radial velocities from new observations and the literature, we constrain the orbital parameters for each young star. Our results show two statistically significant sub-structures: a clockwise stellar disk with 18 candidate stars, as has been proposed before, but with an improved disk membership; a second, almost edge-on plane of 10 candidate stars oriented East-West on the sky that includes at least one IRS 13 star. We estimate the eccentricity distribution of each sub-structure and find that the clockwise disk has = 0.39 and the edge-on plane has = 0.68. We also perform simulations of each disk/plane with incompleteness and spatially-variable extinction to search for asymmetry. Our results show that the clockwise stellar disk is consistent with a uniform azimuthal distribution within the disk. The edge-on plane has an asymmetry that cannot be explained by variable extinction or incompleteness in the field. The orientation, asymmetric stellar distribution, and high eccentricity of the edge-on plane members suggest that this structure may be a stream associated with the IRS 13 group. The complex dynamical structure of the young nuclear cluster indicates that the star formation process involved complex gas structures and dynamics and is inconsistent with a single massive gaseous disk.

  • A Search for Predicted Astrometric Microlensing Events by Nearby Brown Dwarfs

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Gravitational microlensing has the potential to provide direct gravitational masses of single, free-floating brown dwarfs, independent of evolutionary and atmospheric models. The proper motions and parallaxes of nearby brown dwarfs can be used to predict close future alignments with distant background stars that cause a microlensing event. Targeted astrometric follow up of the predicted microlensing events permits the brown dwarf's mass to be measured. Predicted microlensing events are typically found via searching for a peak threshold signal using an estimate of the lens mass. We develop a novel method that finds predicted events that instead will lead to a target lens mass precision. The main advantage of our method is that it does not require a lens mass estimate. We use this method to search for predicted astrometric microlensing events occurring between 2014 - 2032 using a catalog of 1225 low mass star and brown dwarf lenses in the Solar Neighborhood of spectral type M6 or later and a background source catalog from DECaLS Data Release 9. The background source catalog extends to $g = $ 23.95, providing a more dense catalog compared to Gaia. Our search did not reveal any upcoming microlensing events. We estimate the rate of astrometric microlensing event for brown dwarfs in the Legacy Survey and find it to be low $\sim10^{-5}$yr$^{-1}$. We recommend carrying out targeted searches for brown dwarfs in front of the Galactic Bulge and Plane to find astrometric microlensing events that will allow the masses of single, free-floating brown dwarfs to be measured.

  • Real-Time Likelihood-Free Inference of Roman Binary Microlensing Events with Amortized Neural Posterior Estimation

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Fast and automated inference of binary-lens, single-source (2L1S) microlensing events with sampling-based Bayesian algorithms (e.g., Markov Chain Monte Carlo; MCMC) is challenged on two fronts: high computational cost of likelihood evaluations with microlensing simulation codes, and a pathological parameter space where the negative-log-likelihood surface can contain a multitude of local minima that are narrow and deep. Analysis of 2L1S events usually involves grid searches over some parameters to locate approximate solutions as a prerequisite to posterior sampling, an expensive process that often requires human-in-the-loop domain expertise. As the next-generation, space-based microlensing survey with the Roman Space Telescope is expected to yield thousands of binary microlensing events, a new fast and automated method is desirable. Here, we present a likelihood-free inference (LFI) approach named amortized neural posterior estimation, where a neural density estimator (NDE) learns a surrogate posterior $\hat{p}(\theta|x)$ as an observation-parametrized conditional probability distribution, from pre-computed simulations over the full prior space. Trained on 291,012 simulated Roman-like 2L1S simulations, the NDE produces accurate and precise posteriors within seconds for any observation within the prior support without requiring a domain expert in the loop, thus allowing for real-time and automated inference. We show that the NDE also captures expected posterior degeneracies. The NDE posterior could then be refined into the exact posterior with a downstream MCMC sampler with minimal burn-in steps.

  • The Impact of Initial-Final Mass Relations on Black Hole Microlensing

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Uncertainty in the initial-final mass relation (IFMR) has long been a problem in understanding the final stages of massive star evolution. One of the major challenges of constraining the IFMR is the difficulty of measuring the mass of non-luminous remnant objects (i.e. neutron stars and black holes). Gravitational wave detectors have opened the possibility of finding large numbers of compact objects in other galaxies, but all in merging binary systems. Gravitational lensing experiments using astrometry and photometry are capable of finding compact objects, both isolated and in binaries, in the Milky Way. In this work we improve the PopSyCLE microlensing simulation code in order to explore the possibility of constraining the IFMR using the Milky Way microlensing population. We predict that the Roman Space Telescope's microlensing survey will likely be able to distinguish different IFMRs based on the differences at the long end of the Einstein crossing time distribution and the small end of the microlensing parallax distribution, assuming the small ($\pi_E \lesssim 0.02$) microlensing parallaxes characteristic of black hole lenses are able to be measured accurately. We emphasize that future microlensing surveys need to be capable of characterizing events with small microlensing parallaxes in order to place the most meaningful constraints on the IFMR.

  • Adaptive Optics Imaging Breaks the Central Caustic Cusp Approach Degeneracy in High Magnification Microlensing Events

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We report new results for the gravitational microlensing target OGLE-2011-BLG-0950 from adaptive optics (AO) images using the Keck observatory. The original analysis by Choi et al. 2012 reports degenerate solutions between planetary and stellar binary lens systems. This is due to a degeneracy in high magnification events where the shape of the light curve peak can be explained by a source approach to two different cusp geometries with different source radius crossing times. This particular case is the most important type of degeneracy for exoplanet demographics, because the distinction between a planetary mass or stellar binary companion has direct consequences for microlensing exoplanet statistics. The 8 and 10-year baselines between the event and the Keck observations allow us to directly measure a relative proper motion of $4.20\pm 0.21\,$mas/yr, which confirms the detection of the lens star system and directly rules out the planetary companion models that predict a ${\sim}4 \times$ smaller relative proper motion. The combination of the lens brightness and close stellar binary light curve parameters yield primary and secondary star masses of $M_{A} = 1.12^{+0.06}_{-0.04}M_\odot$ and $M_{B} = 0.47^{+0.04}_{-0.03}M_\odot$ at a distance of $D_L = 6.70^{+0.55}_{-0.30}\,$kpc, and a primary-secondary projected separation of $0.39^{+0.05}_{-0.04}\,$AU. Since this degeneracy is likely to be common, the high resolution imaging method described here will be used to disentangle the central caustic cusp approach degeneracy for events observed by the \textit{Roman} exoplanet microlensing survey using the \textit{Roman} images taken near the beginning or end of the survey.

  • 60 Microlensing Events from the Three Years of Zwicky Transient Facility Phase One

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Microlensing events have historically been discovered throughout the Galactic bulge and plane by surveys designed solely for that purpose. We conduct the first multi-year search for microlensing events on the Zwicky Transient Facility (ZTF), an all-sky optical synoptic survey that observes the entire visible Northern sky every few nights. We discover 60 high quality microlensing events in the three years of ZTF-I using the bulk lightcurves in the ZTF Public Data Release 5. 19 of our events are found outside of the Galactic plane ($|b| \geq 15^\circ$), nearly doubling the number of previously discovered events in the stellar halo from surveys pointed toward the Magellanic Clouds and the Andromeda Galaxy. We also record 1,558 ongoing candidate events as potential microlensing that can continue to be observed by ZTF-II for identification. The scalable and computationally efficient methods developed in this work can be applied to future synoptic surveys, such as the Vera C. Rubin Observatory's Legacy Survey of Space and Time and the Nancy Grace Roman Space Telescope, as they attempt to find microlensing events in even larger and deeper datasets.

  • The Swansong of the Galactic Center Source X7: An Extreme Example of Tidal Evolution near the Supermassive Black Hole

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present two decades of new high-angular-resolution near-infrared data from the W. M. Keck Observatory that reveal extreme evolution in X7, an elongated dust and gas feature, presently located half an arcsecond from the Galactic Center supermassive black hole. With both spectro-imaging observations of Br-{\gamma} line-emission and Lp (3.8 {\mu}m) imaging data, we provide the first estimate of its orbital parameters and quantitative characterization of the evolution of its morphology and mass. We find that the leading edge of X7 appears to be on a mildly eccentric (e~0.3), relatively short-period (170 years) orbit and is headed towards periapse passage, estimated to occur in ~2036. Furthermore, our kinematic measurements rule out the earlier suggestion that X7 is associated with the stellar source S0-73 or with any other point source that has overlapped with X7 during our monitoring period. Over the course of our observations, X7 has (1) become more elongated, with a current length-to-width ratio of 9, (2) maintained a very consistent long-axis orientation (position angle of 50 deg), (3) inverted its radial velocity differential from tip to tail from -50 to +80 km/sec, and (4) sustained its total brightness (12.8 Lp magnitudes at the leading edge) and color temperature (425 K), which suggest a constant mass of ~50 MEarth. We present a simple model showing that these results are compatible with the expected effect of tidal forces exerted on it by the central black hole and we propose that X7 is the gas and dust recently ejected from a grazing collision in a binary system.

  • Smartphone screens as astrometric calibrators

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Geometric optical distortion is a significant contributor to the astrometric error budget in large telescopes using adaptive optics. To increase astrometric precision, optical distortion calibration is necessary. Modern distortion calibration systems use back-illuminated pinhole masks to image a regular grid of point sources through a system's optics. The optical distortion of the instrument is then calibrated to an astrometric precision limited by the source placement error on the mask. Because of this, pinhole masks require an extreme level of precision, making their manufacture challenging and expensive. Additionally, they must be designed for a particular system, rendering them incompatible between instruments. We investigate using smartphone OLED screens as astrometric calibrators. Smartphones are low cost, have stable illumination, and can be quickly reconfigured to probe different spatial frequencies in the optical system. In this work, we characterize the astrometric accuracy of a Samsung S20 smartphone, with a view towards providing large format, flexible astrometric calibrators for the next generation of astronomical instruments. Investigating the placement error of 826 green OLED pixels, the non-linear deviations are measured to be 189 nm +/- 15 nm RMS. At this level of error, milli-arcsecond astrometric accuracy can be obtained on modern astronomical instruments.

  • AIROPA II: Modeling Instrumental Aberrations for Off-Axis Point Spread Functions in Adaptive Optics

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Images obtained with single-conjugate adaptive optics (AO) show spatial variation of the point spread function (PSF) due to both atmospheric anisoplanatism and instrumental aberrations. The poor knowledge of the PSF across the field of view strongly impacts the ability to take full advantage of AO capabilities. The AIROPA project aims to model these PSF variations for the NIRC2 imager at the Keck Observatory. Here, we present the characterization of the instrumental phase aberrations over the entire NIRC2 field of view and we present a new metric for quantifying the quality of the calibration, the fraction of variance unexplained (FVU). We used phase diversity measurements obtained on an artificial light source to characterize the variation of the aberrations across the field of view and their evolution with time. We find that there is a daily variation of the wavefront error (RMS of the residuals is 94~nm) common to the whole detector, but the differential aberrations across the field of view are very stable (RMS of the residuals between different epochs is 59~nm). This means that instrumental calibrations need to be monitored often only at the center of the detector, and the much more time-consuming variations across the field of view can be characterized less frequently (most likely when hardware upgrades happen). Furthermore, we tested AIROPA's instrumental model through real data of the fiber images on the detector. We find that modeling the PSF variations across the field of view improves the FVU metric by 60\% and reduces the detection of fake sources by 70\%.