您选择的条件: Josep Miquel Girart
  • Magnetic fields in the early stages of massive star formation as revealed by ALMA

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present 1.3 mm ALMA dust polarization observations at a resolution of $\sim$0.02 pc of three massive molecular clumps, MM1, MM4, and MM9, in the infrared dark cloud G28.34+0.06. With the sensitive and high-resolution continuum data, MM1 is resolved into a cluster of condensations. The magnetic field structure in each clump is revealed by the polarized emission. We found a trend of decreasing polarized emission fraction with increasing Stokes $I$ intensities in MM1 and MM4. Using the angular dispersion function method (a modified Davis-Chandrasekhar-Fermi method), the plane-of-sky magnetic field strength in two massive dense cores, MM1-Core1 and MM4-Core4, are estimated to be $\sim$1.6 mG and $\sim$0.32 mG, respectively. \textbf{The ordered magnetic energy is found to be smaller than the turbulent energy in the two cores, while the total magnetic energy is found to be comparable to the turbulent energy.} The total virial parameters in MM1-Core1 and MM4-Core4 are calculated to be $\sim$0.76 and $\sim$0.37, respectively, suggesting that massive star formation does not start in equilibrium. Using the polarization-intensity gradient-local gravity method, we found that the local gravity is closely aligned with intensity gradient in the three clumps, and the magnetic field tends to be aligned with the local gravity in MM1 and MM4 except for regions near the emission peak, which suggests that the gravity plays a dominant role in regulating the gas collapse. Half of the outflows in MM4 and MM9 are found to be aligned within 10$^{\circ}$ of the condensation-scale ($<$0.05 pc) magnetic field, indicating that the magnetic field could play an important role from condensation to disk scale in the early stage of massive star formation. We also found that the fragmentation in MM1-Core1 cannot be solely explained by thermal Jeans fragmentation or turbulent Jeans fragmentation.

  • Multi-scale physical properties of NGC 6334 as revealed by local relative orientations between magnetic fields, density gradients, velocity gradients, and gravity

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present ALMA dust polarization and molecular line observations toward 4 clumps (I(N), I, IV, and V) in the massive star-forming region NGC 6334. In conjunction with large-scale dust polarization and molecular line data from JCMT, Planck, and NANTEN2, we make a synergistic analysis of relative orientations between magnetic fields ($\theta_{\mathrm{B}}$), column density gradients ($\theta_{\mathrm{NG}}$), local gravity ($\theta_{\mathrm{LG}}$), and velocity gradients ($\theta_{\mathrm{VG}}$) to investigate the multi-scale (from $\sim$30 pc to 0.003 pc) physical properties in NGC 6334. We find that the relative orientation between $\theta_{\mathrm{B}}$ and $\theta_{\mathrm{NG}}$ changes from statistically more perpendicular to parallel as column density ($N_{\mathrm{H_2}}$) increases, which is a signature of trans-to-sub-Alfv\'{e}nic turbulence at complex/cloud scales as revealed by previous numerical studies. Because $\theta_{\mathrm{NG}}$ and $\theta_{\mathrm{LG}}$ are preferentially aligned within the NGC 6334 cloud, we suggest that the more parallel alignment between $\theta_{\mathrm{B}}$ and $\theta_{\mathrm{NG}}$ at higher $N_{\mathrm{H_2}}$ is because the magnetic field line is dragged by gravity. At even higher $N_{\mathrm{H_2}}$, the angle between $\theta_{\mathrm{B}}$ and $\theta_{\mathrm{NG}}$ or $\theta_{\mathrm{LG}}$ transits back to having no preferred orientation or statistically slightly more perpendicular, suggesting that the magnetic field structure is impacted by star formation activities. A statistically more perpendicular alignment is found between $\theta_{\mathrm{B}}$ and $\theta_{\mathrm{VG}}$ throughout our studied $N_{\mathrm{H_2}}$ range, which indicates a trans-to-sub-Alfv\'{e}nic state at small scales as well. The normalised mass-to-flux ratio derived from the polarization-intensity gradient (KTH) method increases with $N_{\mathrm{H_2}}$.

  • Magnetically regulated collapse in the B335 protostar? II. Observational constraints on gas ionization and magnetic field coupling

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Non-ideal magnetohydrodynamic effects that rule the coupling of the magnetic field to the circumstellar gas during the low-mass star formation process depend heavily on the local physical conditions, such as the ionization fraction of the gas. The purpose of this work is to observationally characterize the level of ionization of the circumstellar gas at small envelope radii and investigate its relation to the efficiency of the coupling between the star-forming gas and the magnetic field in the Class 0 protostar B335. We have obtained molecular line emission maps of B335 with ALMA, which we use to measure the deuteration fraction of the gas, its ionization fraction, and the cosmic-ray ionization rate, at envelope radii $\lesssim$1000 au. We find large fractions of ionized gas, $\chi_{e} \simeq 1-8 \times 10^{-6}$. Our observations also reveal an enhanced ionization that increases at small envelope radii, reaching values up to $\zeta_{CR} \simeq 10^{-14}$~s$^{-1}$ at a few hundred au from the central protostellar object. We show that this extreme ionization rate can be attributed to the presence of cosmic rays accelerated close to the protostar. We report the first resolved map of the cosmic-ray ionization rate at scales $\lesssim 1000$~au in a solar-type Class 0 protostar, finding remarkably high values. Our observations suggest that local acceleration of cosmic rays, and not the penetration of interstellar Galactic cosmic rays, may be responsible for the gas ionization in the inner envelope, potentially down to disk forming scales. If confirmed, our findings imply that protostellar disk properties may also be determined by local processes setting the coupling between the gas and the magnetic field, and not only by the amount of angular momentum available at large envelope scales and the magnetic field strength in protostellar cores.