按提交时间
按主题分类
按作者
按机构
您选择的条件: D. O. Jones
  • Probing the evolution of Type Ia supernovae with their ejecta velocities

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: There is growing evidence that Type Ia supernovae (SNe Ia) are likely produced via multiple explosion channels. Understanding how different channels evolve with redshift is critical in determining their precision in measuring cosmological parameters. Previous studies indicated that SN Ia ejecta velocity is one powerful tool to differentiate between different channels. It was also suspected that the tight correlation with the host-galaxy environment could result in the evolution of SN ejecta velocities. In this work, we measure the Si II 6355 velocities from ~400 confirmed SNe Ia discovered by the Pan-STARRS1 Medium Deep Survey (PS1-MDS), and combine them with the SNe discovered by different surveys to form a large compilation of velocity measurements. For the first time, we find that the SNe Ia with faster Si II 6355 have a significantly different redshift distribution from their slower counterparts (with a p-value of 0.00008 from the K-S test), in the sense that HV SNe Ia are more likely to be found at lower redshift. The trend may suggest a strong evolution of SN Ia ejecta velocity, or imply that the SN Ia demographics (as distinguished by their ejecta velocities) are likely to vary with time. Our results also imply that the progenitor system of HV SNe Ia (and possibly some NV SNe Ia) may favor a metal-rich environment and/or scenarios of long delay time. However, we do not see a significant difference (in ~2 sigma) in Hubble residuals when splitting our sample based on the Si II 6355 velocity.

  • The Young Supernova Experiment Data Release 1 (YSE DR1): Light Curves and Photometric Classification of 1975 Supernovae

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present the Young Supernova Experiment Data Release 1 (YSE DR1), comprised of processed multi-color Pan-STARRS1 (PS1) griz and Zwicky Transient Facility (ZTF) gr photometry of 1975 transients with host-galaxy associations, redshifts, spectroscopic/photometric classifications, and additional data products from 2019 November 24 to 2021 December 20. YSE DR1 spans discoveries and observations from young and fast-rising supernovae (SNe) to transients that persist for over a year, with a redshift distribution reaching z~0.5. We present relative SN rates from YSE's magnitude- and volume-limited surveys, which are consistent with previously published values within estimated uncertainties for untargeted surveys. We combine YSE and ZTF data, and create multi-survey SN simulations to train the ParSNIP and SuperRAENN photometric classification algorithms; when validating our ParSNIP classifier on 472 spectroscopically classified YSE DR1 SNe, we achieve 82% accuracy across three SN classes (SNe Ia, II, Ib/Ic) and 90% accuracy across two SN classes (SNe Ia, core-collapse SNe). Our classifier performs particularly well on SNe Ia, with high (>90%) individual completeness and purity, which will help build an anchor photometric SNe Ia sample for cosmology. We then use our photometric classifier to characterize our photometric sample of 1483 SNe, labeling 1048 (~71%) SNe Ia, 339 (~23%) SNe II, and 96 (~6%) SNe Ib/Ic. YSE DR1 provides a training ground for building discovery, anomaly detection, and classification algorithms, performing cosmological analyses, understanding the nature of red and rare transients, exploring tidal disruption events and nuclear variability, and preparing for the forthcoming Vera C. Rubin Observatory Legacy Survey of Space and Time.

  • SALT3-NIR: Taking the Open-Source Type Ia Supernova Model to Longer Wavelengths for Next-Generation Cosmological Measurements

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: A large fraction of Type Ia supernova (SN Ia) observations over the next decade will be in the near-infrared (NIR), at wavelengths beyond the reach of the current standard light-curve model for SN Ia cosmology, SALT3 ($\sim 2800$--8700$A$ central filter wavelength). To harness this new SN Ia sample and reduce future light-curve standardization systematic uncertainties, we train SALT3 at NIR wavelengths (SALT3-NIR) up to 2 $\mu$m with the open-source model-training software SALTShaker, which can easily accommodate future observations. Using simulated data we show that the training process constrains the NIR model to $\sim 2$--3% across the phase range ($-20$ to $50$ days). We find that Hubble residual (HR) scatter is smaller using the NIR alone or optical+NIR compared to optical alone, by up to $\sim 30$% depending on filter choice (95% confidence). There is significant correlation between NIR light-curve stretch measurements and luminosity, with stretch and color corrections often improving HR scatter by up to $\sim20%$. For SN Ia observations expected from the \textit{Roman Space Telescope}, SALT3-NIR increases the amount of usable data in the SALT framework by $\sim 20$% at redshift $z\lesssim0.4$ and by $\sim 50$% at $z\lesssim0.15$. The SALT3-NIR model is part of the open-source {\tt SNCosmo} and {\tt SNANA} SN Ia cosmology packages.

  • SN 2022ann: A type Icn supernova from a dwarf galaxy that reveals helium in its circumstellar environment

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present optical and near-infrared (NIR) observations of the Type Icn supernova (SN Icn) 2022ann, the fifth member of its newly identified class of SNe. Its early optical spectra are dominated by narrow carbon and oxygen P-Cygni features with absorption velocities of 800 km/s; slower than other SNe Icn and indicative of interaction with a dense, H/He-poor circumstellar medium (CSM) that is outflowing slower than a typical Wolf-Rayet wind velocity of $>$1000 km/s. We identify helium in NIR spectra obtained two weeks after maximum and in optical spectra at three weeks, demonstrating that the CSM is not fully devoid of helium. We never detect broad spectral features from SN ejecta, including in spectra extending to the nebular phase, a unique characteristic among SNe~Icn. Compared to other SNe Icn, SN 2022ann has a low luminosity, with a peak o-band absolute magnitude of -17.7, and evolves slowly. We model the bolometric light curve and find it is well-described by 1.7 M_Sun of SN ejecta interacting with 0.2 M_sun of CSM. We place an upper limit of 0.04 M_Sun of Ni56 synthesized in the explosion. The host galaxy is a dwarf galaxy with a stellar mass of 10^7.34 M_Sun (implied metallicity of log(Z/Z_Sun) $\approx$ 0.10) and integrated star-formation rate of log(SFR) = -2.20 M_sun/yr; both lower than 97\% of the galaxies observed to produce core-collapse supernovae, although consistent with star-forming galaxies on the galaxy Main Sequence. The low CSM velocity, nickel and ejecta masses, and likely low-metallicity environment disfavour a single Wolf-Rayet progenitor star. Instead, a binary companion star is likely required to adequately strip the progenitor before explosion and produce a low-velocity outflow. The low CSM velocity may be indicative of the outer Lagrangian points in the stellar binary progenitor, rather than from the escape velocity of a single Wolf-Rayet-like massive star.

  • Probing the evolution of Type Ia supernovae with their ejecta velocities

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: There is growing evidence that Type Ia supernovae (SNe Ia) are likely produced via multiple explosion channels. Understanding how different channels evolve with redshift is critical in determining their precision in measuring cosmological parameters. Previous studies indicated that SN Ia ejecta velocity is one powerful tool to differentiate between different channels. It was also suspected that the tight correlation with the host-galaxy environment could result in the evolution of SN ejecta velocities. In this work, we measure the Si II 6355 velocities from ~400 confirmed SNe Ia discovered by the Pan-STARRS1 Medium Deep Survey (PS1-MDS), and combine them with the SNe discovered by different surveys to form a large compilation of velocity measurements. For the first time, we find that the SNe Ia with faster Si II 6355 have a significantly different redshift distribution from their slower counterparts (with a p-value of 0.00008 from the K-S test), in the sense that HV SNe Ia are more likely to be found at lower redshift. The trend may suggest a strong evolution of SN Ia ejecta velocity, or imply that the SN Ia demographics (as distinguished by their ejecta velocities) are likely to vary with time. Our results also imply that the progenitor system of HV SNe Ia (and possibly some NV SNe Ia) may favor a metal-rich environment and/or scenarios of long delay time. However, we do not see a significant difference (in ~2 sigma) in Hubble residuals when splitting our sample based on the Si II 6355 velocity.

  • YSE-PZ: A Transient Survey Management Platform that Empowers the Human-in-the-Loop

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The modern study of astrophysical transients has been transformed by an exponentially growing volume of data. Within the last decade, the transient discovery rate has increased by a factor of ~20, with associated survey data, archival data, and metadata also increasing with the number of discoveries. To manage the data at this increased rate, we require new tools. Here we present YSE-PZ, a transient survey management platform that ingests multiple live streams of transient discovery alerts, identifies the host galaxies of those transients, downloads coincident archival data, and retrieves photometry and spectra from ongoing surveys. YSE-PZ also presents a user with a range of tools to make and support timely and informed transient follow-up decisions. Those subsequent observations enhance transient science and can reveal physics only accessible with rapid follow-up observations. Rather than automating out human interaction, YSE-PZ focuses on accelerating and enhancing human decision making, a role we describe as empowering the human-in-the-loop. Finally, YSE-PZ is built to be flexibly used and deployed; YSE-PZ can support multiple, simultaneous, and independent transient collaborations through group-level data permissions, allowing a user to view the data associated with the union of all groups in which they are a member. YSE-PZ can be used as a local instance installed via Docker or deployed as a service hosted in the cloud. We provide YSE-PZ as an open-source tool for the community.

  • SALT2 Versus SALT3: Updated Model Surfaces and Their Impacts on Type Ia Supernova Cosmology

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: For the past decade, SALT2 has been the most common model used to fit Type Ia supernova (SN Ia) light curves for dark energy analyses. Recently, the SALT3 model was released, which upgraded a number of model features but has not yet been used for measurements of dark energy. Here, we evaluate the impact of switching from SALT2 to SALT3 for a SN cosmology analysis. We train SALT2 and SALT3 on an identical training sample of 1083 well-calibrated Type Ia supernovae, ensuring that any differences found come from the underlying model framework. We publicly release the results of this training (the SALT "surfaces"). We then run a cosmology analysis on the public Dark Energy Survey 3-Year Supernova data sample (DES-SN3YR), and on realistic simulations of those data. We provide the first estimate of the SN+CMB systematic uncertainty arising from the choice of SALT model framework (i.e. SALT2 versus SALT3), $\Delta w = +0.001 \pm 0.005$ -- a negligible effect at the current level of dark energy analyses. We also find that the updated surfaces are less sensitive to photometric calibration uncertainties than previous SALT2 surfaces, with the average spectral energy density dispersion reduced by a factor of two over optical wavelengths. This offers an opportunity to reduce the contribution of calibration errors to SN cosmology uncertainty budgets.

  • Propagating Uncertainties in the SALT3 Model Training Process to Cosmological Constraints

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Type Ia supernovae (SNe Ia) are standardizable candles that must be modeled empirically to yield cosmological constraints. To understand the robustness of this modeling to variations in the model training procedure, we build an end-to-end pipeline to test the recently developed SALT3 model. We explore the consequences of removing pre-2000s low-$z$ or poorly calibrated $U$-band data, adjusting the amount and fidelity of SN Ia spectra, and using a model-independent framework to simulate the training data. We find the SALT3 model surfaces are improved by having additional spectra and $U$-band data, and can be shifted by $\sim 5\%$ if host galaxy contamination is not sufficiently removed from SN spectra. We find that resulting measurements of $w$ are consistent to within $2.5\%$ for all training variants explored in this work, with the largest shifts coming from variants that add color-dependent calibration offsets or host galaxy contamination to the training spectra, and those that remove pre-2000s low-$z$ data. These results demonstrate that the SALT3 model training procedure is largely robust to reasonable variations in the training data, but that additional attention must be paid to the treatment of spectroscopic data in the training process. We also find that the training procedure is sensitive to the color distributions of the input data; the resulting $w$ measurement can be biased by $\sim2\%$ if the color distribution is not sufficiently wide. Future low-$z$ data, particularly $u$-band observations and high signal-to-noise ratio SN Ia spectra, will help to significantly improve SN Ia modeling in the coming years.