您选择的条件: J. M. DerKacy
  • SN 2018hna: Adding a Piece to the Puzzles of the Explosion of Blue Supergiants

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present extensive optical/ultraviolet observations and modelling analysis for the nearby SN 1987A-like peculiar Type II supernova (SN) 2018hna. Both photometry and spectroscopy covered phases extending to $>$500 days after the explosion, making it one of the best-observed SN II of this subtype. SN 2018hna is obviously bluer than SN 1987A during the photospheric phase, suggesting higher photospheric temperature, which may account for weaker BaII $\mathrm{\lambda}$6142 lines in its spectra. Analysis of early-time temperature evolution suggests a radius of $\sim$45 $\mathrm{R_{\odot}}$ for the progenitor of SN 2018hna, consistent with a blue supergiant (BSG). By fitting the bolometric light curve with hydrodynamical models, we find that SN 2018hna has an ejecta mass of $\sim$(13.7--17.7) $\mathrm{M_{\odot}}$, a kinetic energy of $\sim$ (1.0--1.2) $\times 10^{51}$ erg, and a $^{56}$Ni mass of about 0.05 $\mathrm{M_{\odot}}$. Moreover, based on standard stellar evolution and the oxygen mass (0.44--0.73 $\mathrm{M_{\odot}}$) deduced from nebular [OI] lines, the progenitor of SN 2018hna is expected to have an initial main-sequence mass $<$16 $\mathrm{M_{\odot}}$. In principle, such a relatively low-mass star cannot end as a BSG just before core-collapse, except some unique mechanisms are involved, such as rapid rotation, restricted semiconvection, etc. On the other hand, binary scenario may be more favourable, like in the case of SN 1987A. While the much lower oxygen mass inferred for SN~2018hna may imply that its progenitor system also had much lower initial masses than that of SN 1987A.

  • SN 2021fxy: Mid-Ultraviolet Flux Suppression is a Common Feature of Type Ia Supernovae

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present ultraviolet (UV) to near-infrared (NIR) observations and analysis of the nearby Type Ia supernova SN 2021fxy. Our observations include UV photometry from Swift/UVOT, UV spectroscopy from HST/STIS, and high-cadence optical photometry with the Swope 1-m telescope capturing intra-night rises during the early light curve. Early $B-V$ colours show SN 2021fxy is the first "shallow-silicon" (SS) SN Ia to follow a red-to-blue evolution, compared to other SS objects which show blue colours from the earliest observations. Comparisons to other spectroscopically normal SNe Ia with HST UV spectra reveal SN 2021fxy is one of several SNe Ia with flux suppression in the mid-UV. These SNe also show blue-shifted mid-UV spectral features and strong high-velocity Ca II features. One possible origin of this mid-UV suppression is the increased effective opacity in the UV due to increased line blanketing from high velocity material, but differences in the explosion mechanism cannot be ruled out. Among SNe Ia with mid-UV suppression, SNe 2021fxy and 2017erp show substantial similarities in their optical properties despite belonging to different Branch subgroups, and UV flux differences of the same order as those found between SNe 2011fe and 2011by. Differential comparisons to multiple sets of synthetic SN Ia UV spectra reveal this UV flux difference likely originates from a luminosity difference between SNe 2021fxy and 2017erp, and not differing progenitor metallicities as suggested for SNe 2011by and 2011fe. These comparisons illustrate the complicated nature of UV spectral formation, and the need for more UV spectra to determine the physical source of SNe Ia UV diversity.

  • SN 2018hna: Adding a Piece to the Puzzles of the Explosion of Blue Supergiants

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present extensive optical/ultraviolet observations and modelling analysis for the nearby SN 1987A-like peculiar Type II supernova (SN) 2018hna. Both photometry and spectroscopy covered phases extending to $>$500 days after the explosion, making it one of the best-observed SN II of this subtype. SN 2018hna is obviously bluer than SN 1987A during the photospheric phase, suggesting higher photospheric temperature, which may account for weaker BaII $\mathrm{\lambda}$6142 lines in its spectra. Analysis of early-time temperature evolution suggests a radius of $\sim$45 $\mathrm{R_{\odot}}$ for the progenitor of SN 2018hna, consistent with a blue supergiant (BSG). By fitting the bolometric light curve with hydrodynamical models, we find that SN 2018hna has an ejecta mass of $\sim$(13.7--17.7) $\mathrm{M_{\odot}}$, a kinetic energy of $\sim$ (1.0--1.2) $\times 10^{51}$ erg, and a $^{56}$Ni mass of about 0.05 $\mathrm{M_{\odot}}$. Moreover, based on standard stellar evolution and the oxygen mass (0.44--0.73 $\mathrm{M_{\odot}}$) deduced from nebular [OI] lines, the progenitor of SN 2018hna is expected to have an initial main-sequence mass $<$16 $\mathrm{M_{\odot}}$. In principle, such a relatively low-mass star cannot end as a BSG just before core-collapse, except some unique mechanisms are involved, such as rapid rotation, restricted semiconvection, etc. On the other hand, binary scenario may be more favourable, like in the case of SN 1987A. While the much lower oxygen mass inferred for SN~2018hna may imply that its progenitor system also had much lower initial masses than that of SN 1987A.