您选择的条件: Mithi A. C. de los Reyes
  • The Stellar Kinematics of Void Dwarf Galaxies Using KCWI

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Dwarf galaxies located in extremely under-dense cosmic voids are excellent test-beds for disentangling the effects of large-scale environment on galaxy formation and evolution. We present integral field spectroscopy for low-mass galaxies ($M_{\star}=10^{7}-10^{9}~M_{\odot}$) located inside (N=21) and outside (N=9) cosmic voids using the Keck Cosmic Web Imager (KCWI). Using measurements of stellar line-of-sight rotational velocity $v_{\mathrm{rot}}$ and velocity dispersion $\sigma_{\star}$, we test the tidal stirring hypothesis, which posits that dwarf spheroidal galaxies are formed through tidal interactions with more massive host galaxies. We measure low values of $v_{\mathrm{rot}}/\sigma_{\star}\lesssim2$ for our sample of isolated dwarf galaxies, and we find no trend between $v_{\mathrm{rot}}/\sigma_{\star}$ and distance from a massive galaxy $d_{L^{\star}}$ out to $d_{L^{\star}}\sim10$ Mpc. These suggest that dwarf galaxies can become dispersion-supported "puffy" systems even in the absence of environmental effects like tidal interactions. We also find indications of an upward trend between $v_{\mathrm{rot}}/\sigma_{\star}$ and galaxy stellar mass, perhaps implying that stellar disk formation depends on mass rather than environment. Although some of our conclusions may be slightly modified by systematic effects, our main result still holds: that isolated low-mass galaxies may form and remain as puffy systems rather than the dynamically cold disks predicted by classical galaxy formation theory.

  • High-Resolution Chemical Abundances of the Nyx Stream

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Nyx is a nearby, prograde, and high-eccentricity stellar stream physically contained in the thick disk but with an unknown origin. Nyx could be the remnant of a disrupted dwarf galaxy, in which case the associated dark matter substructure could affect terrestrial dark matter direct detection experiments. Alternatively, Nyx could be a signature of the Milky Way's disk formation and evolution. To determine the origin of Nyx, we obtained high-resolution spectroscopy of 34 Nyx stars using Keck/HIRES and Magellan/MIKE. A differential chemical abundance analysis shows that most Nyx stars reside in a metal-rich ($\mbox{[Fe/H]} > -1$) high-$\alpha$ component that is chemically indistinguishable from the thick disk. This rules out an originally suggested scenario that Nyx is the remnant of a single massive dwarf galaxy merger. However, we also identify five substantially more metal-poor stars ($\mbox{[Fe/H]} \sim -2.0$) that have chemical abundances similar to the metal-weak thick disk. It remains unclear how stars chemically identical to the thick disk can be on such prograde, high-eccentricity orbits. We suggest two most likely scenarios: that Nyx is the result of an early minor dwarf galaxy merger or that it is a record of the early spin-up of the Milky Way disk -- although neither perfectly reproduces the chemodynamic observations. The most likely formation scenarios suggest that future spectroscopic surveys should find Nyx-like structures outside of the Solar Neighborhood.

  • NGC 147 Corroborates the Break in the Stellar Mass-Stellar Metallicity Relation for Galaxies

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The stellar mass-stellar metallicity relation (MZR) is an essential approach to probe the chemical evolution of galaxies. It reflects the balance between galactic feedback and gravitational potential as a function of stellar mass. However, the current MZR of local dwarf satellite galaxies (M* ~ 10^9.5 Msun, measured from integrated-light spectroscopy). Such a discrepancy may result from a systematic difference between the two methods, or it may indicate a break in the MZR around 10^9 Msun. To address this question, we measured the stellar metallicity of NGC 147 from integrated light using the Palomar Cosmic Web Imager (PCWI). We compared the stellar metallicity estimates from integrated light with the measurements from resolved stellar spectroscopy and found them to be consistent within 0.1 dex. On the other hand, the high-mass MZR overpredicts the metallicity by 0.6 dex at the mass of NGC 147. Therefore, our results tentatively suggest that the discrepancy between the low-mass MZR and high-mass MZR should not be attributed to a systematic difference in techniques. Instead, real physical processes cause the transition in the MZR. In addition, we discovered a positive age gradient in the innermost region and a negative metallicity gradient from the resolved stars at larger radii, suggesting a possible outside-in formation of NGC 147.