按提交时间
按主题分类
按作者
按机构
您选择的条件: Shangfei Liu
  • Evolution of the Planetary Obliquity: The Eccentric Kozai-Lidov Mechanism Coupled with Tide

    分类: 天文学 >> 天文学 提交时间: 2024-06-03

    摘要: The planetary obliquity plays a significant role in determining physical properties of planetary surfaces and climate. As direct detection is constrained due to the present observation accuracy, kinetic theories are helpful to predict the evolution of the planetary obliquity. Here the coupling effect between the eccentric Kozai-Lidov (EKL) effect and the equilibrium tide is extensively investigated, the planetary obliquity performs to follow two kinds of secular evolution paths, based on the conservation of total angular momentum. The equilibrium timescale of the planetary obliquity $t_{ mathrm{eq}}$ varies along with $r_{t}$, which is defined as the initial timescale ratio of the tidal dissipation and secular perturbation. We numerically derive the linear relationship between $t_{ mathrm{eq}}$ and $r_{t}$ with the maximum likelihood method. The spin-axis orientation of S-type terrestrials orbiting M-dwarfs reverses over $90^ circ$ when $r_{t} > 100$, then enter the quasi-equilibrium state between $40^ circ$ and $60^ circ$, while the maximum obliquity can reach $130^ circ$ when $r_{t} > 10^4 $. Numerical simulations show that the maximum obliquity increases with the semi-major axis ratio $a_1$/$a_2$, but is not so sensitive to the eccentricity $e_2$. The likelihood of obliquity flip for S-type terrestrials in general systems with $a_2 < 45$ AU is closely related to $m_1$. The observed potential oblique S-type planets HD 42936 b, GJ 86 Ab and $ tau$ Boot Ab are explored to have a great possibility to be head-down over the secular evolution of spin.

  • Planetesimal growth in evolving protoplanetary disks: constraints from the pebble supply

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In the core accretion model, planetesimals grow by mutual collisions and engulfing millimeter to centimeter particles, i.e., pebbles. Pebble accretion can significantly increase the accretion efficiency and help explain the presence of planets on wide orbits. However, the pebble supply is typically parameterized as a coherent pebble mass flux, sometimes being constant in space and time. Here we solve the dust advection and diffusion within viciously evolving protoplanetary disks to determine the pebble supply self-consistently. The pebbles are then accreted by planetesimals interacting with the gas disk via gas drags and gravitational torques. The pebble supply is variable with space and decays with time quickly with a pebble flux below 10 $M_\oplus$/Myr after 1 Myr in our models. As a result, only when massive planetesimals ($>$ 0.01 $M_\oplus$) are luckily produced by the streaming instability or the disk has low viscosity ($\alpha \sim 0.0001$), can the herd of planetesimals grows over Mars mass within 2 Myr. By then, planetesimals only capture pebbles about 50 times their mass and as little as 10 times beyond 20 au due to limited pebble supply. Further studies considering multiple dust species in various disk conditions are warranted to fully assess the realistic pebble supply and its influence on planetesimal growth.

  • Planetesimal growth in evolving protoplanetary disks: constraints from the pebble supply

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In the core accretion model, planetesimals grow by mutual collisions and engulfing millimeter to centimeter particles, i.e., pebbles. Pebble accretion can significantly increase the accretion efficiency and help explain the presence of planets on wide orbits. However, the pebble supply is typically parameterized as a coherent pebble mass flux, sometimes being constant in space and time. Here we solve the dust advection and diffusion within viciously evolving protoplanetary disks to determine the pebble supply self-consistently. The pebbles are then accreted by planetesimals interacting with the gas disk via gas drags and gravitational torques. The pebble supply is variable with space and decays with time quickly with a pebble flux below 10 $M_\oplus$/Myr after 1 Myr in our models. As a result, only when massive planetesimals ($>$ 0.01 $M_\oplus$) are luckily produced by the streaming instability or the disk has low viscosity ($\alpha \sim 0.0001$), can the herd of planetesimals grows over Mars mass within 2 Myr. By then, planetesimals only capture pebbles about 50 times their mass and as little as 10 times beyond 20 au due to limited pebble supply. Further studies considering multiple dust species in various disk conditions are warranted to fully assess the realistic pebble supply and its influence on planetesimal growth.

  • ET White Paper: To Find the First Earth 2.0

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We propose to develop a wide-field and ultra-high-precision photometric survey mission, temporarily named "Earth 2.0 (ET)". This mission is designed to measure, for the first time, the occurrence rate and the orbital distributions of Earth-sized planets. ET consists of seven 30cm telescopes, to be launched to the Earth-Sun's L2 point. Six of these are transit telescopes with a field of view of 500 square degrees. Staring in the direction that encompasses the original Kepler field for four continuous years, this monitoring will return tens of thousands of transiting planets, including the elusive Earth twins orbiting solar-type stars. The seventh telescope is a 30cm microlensing telescope that will monitor an area of 4 square degrees toward the galactic bulge. This, combined with simultaneous ground-based KMTNet observations, will measure masses for hundreds of long-period and free-floating planets. Together, the transit and the microlensing telescopes will revolutionize our understandings of terrestrial planets across a large swath of orbital distances and free space. In addition, the survey data will also facilitate studies in the fields of asteroseismology, Galactic archeology, time-domain sciences, and black holes in binaries.