您选择的条件: D. Scolnic
  • Comparative Analysis of TRGBs (CATs) from Unsupervised, Multi-Halo-Field Measurements: Contrast is Key

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Tip of the Red Giant Branch (TRGB) is an apparent discontinuity in the color-magnitude diagram (CMD) along the giant branch due to the end of the red giant evolutionary phase and is used to measure distances in the local universe. In practice, the tip is often fuzzy and its localization via edge detection response (EDR) relies on several methods applied on a case-by-case basis. It is hard to evaluate how individual choices affect a distance estimation using only a single host field while also avoiding confirmation bias. To devise a standardized approach, we compare unsupervised, algorithmic analyses of the TRGB in multiple halo fields per galaxy, up to 11 fields for a single host and 50 fields across 10 galaxies, using high signal-to-noise stellar photometry obtained by the GHOSTS survey with the Hubble Space Telescope. We first optimize methods for the lowest field-to-field dispersion including spatial filtering to remove star forming regions, smoothing and weighting of the luminosity function, selection of the RGB by color, and tip selection based on the number of likely RGB stars and the ratio of stars above versus below the tip ($R$). We find $R$, which we call the tip `contrast', to be the most important indicator of the quality of EDR measurements; we find that field-to-field EDR repeatability varies from 0.3 mag to $\leq$ 0.05 mag for $R=4$ to 7, respectively, though less than half the fields reach the higher quality. Further, we find that $R$, which varies with the age/metallicity of the stellar population based on models, correlates with the magnitude of the tip (and after accounting for low internal extinction), i.e., a tip-contrast relation with slope of $-0.023\pm0.0046$ mag/ratio, a $\sim 5\sigma$ result that improves standardization of the TRGB. We discuss the value of consistent TRGB standardization across rungs for robust distance ladder measurements.

  • Comparative Analysis of TRGBs (CATs) from Unsupervised, Multi-Halo-Field Measurements: Contrast is Key

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Tip of the Red Giant Branch (TRGB) is an apparent discontinuity in the color-magnitude diagram (CMD) along the giant branch due to the end of the red giant evolutionary phase and is used to measure distances in the local universe. In practice, the tip is often fuzzy and its localization via edge detection response (EDR) relies on several methods applied on a case-by-case basis. It is hard to evaluate how individual choices affect a distance estimation using only a single host field while also avoiding confirmation bias. To devise a standardized approach, we compare unsupervised, algorithmic analyses of the TRGB in multiple halo fields per galaxy, up to 11 fields for a single host and 50 fields across 10 galaxies, using high signal-to-noise stellar photometry obtained by the GHOSTS survey with the Hubble Space Telescope. We first optimize methods for the lowest field-to-field dispersion including spatial filtering to remove star forming regions, smoothing and weighting of the luminosity function, selection of the RGB by color, and tip selection based on the number of likely RGB stars and the ratio of stars above versus below the tip ($R$). We find $R$, which we call the tip `contrast', to be the most important indicator of the quality of EDR measurements; we find that field-to-field EDR repeatability varies from 0.3 mag to $\leq$ 0.05 mag for $R=4$ to 7, respectively, though less than half the fields reach the higher quality. Further, we find that $R$, which varies with the age/metallicity of the stellar population based on models, correlates with the magnitude of the tip (and after accounting for low internal extinction), i.e., a tip-contrast relation with slope of $-0.023\pm0.0046$ mag/ratio, a $\sim 5\sigma$ result that improves standardization of the TRGB. We discuss the value of consistent TRGB standardization across rungs for robust distance ladder measurements.

  • Using Host Galaxy Spectroscopy to Explore Systematics in the Standardisation of Type Ia Supernovae

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We use stacked spectra of the host galaxies of photometrically identified type Ia supernovae (SNe Ia) from the Dark Energy Survey (DES) to search for correlations between Hubble diagram residuals and the spectral properties of the host galaxies. Utilising full spectrum fitting techniques on stacked spectra binned by Hubble residual, we find no evidence for trends between Hubble residuals and properties of the host galaxies that rely on spectral absorption features ($< 1.3\sigma$), such as stellar population age, metallicity, and mass-to-light ratio. However, we find significant trends between the Hubble residuals and the strengths of [OII] ($4.4\sigma$) and the Balmer emission lines ($3\sigma$). These trends are weaker than the well known trend between Hubble residuals and host galaxy stellar mass ($7.2\sigma$) that is derived from broad band photometry. After light curve corrections, we see fainter SNe Ia residing in galaxies with larger line strengths. We also find a trend (3$\sigma$) between Hubble residual and the Balmer decrement (a measure of reddening by dust) using H${\beta}$ and H${\gamma}$. The trend, quantified by correlation coefficients, is slightly more significant in the redder SNe Ia, suggesting that bluer SNe Ia are relatively unaffected by dust in the interstellar medium of the host and that dust contributes to current Hubble diagram scatter impacting the measurement of cosmological parameters.

  • Dark Energy Survey Year 3 Results: Constraints on extensions to $\Lambda$CDM with weak lensing and galaxy clustering

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We constrain extensions to the $\Lambda$CDM model using measurements from the Dark Energy Survey's first three years of observations and external data. The DES data are the two-point correlation functions of weak gravitational lensing, galaxy clustering, and their cross-correlation. We use simulated data and blind analyses of real data to validate the robustness of our results. In many cases, constraining power is limited by the absence of nonlinear predictions that are reliable at our required precision. The models are: dark energy with a time-dependent equation of state, non-zero spatial curvature, sterile neutrinos, modifications of gravitational physics, and a binned $\sigma_8(z)$ model which serves as a probe of structure growth. For the time-varying dark energy equation of state evaluated at the pivot redshift we find $(w_{\rm p}, w_a)= (-0.99^{+0.28}_{-0.17},-0.9\pm 1.2)$ at 68% confidence with $z_{\rm p}=0.24$ from the DES measurements alone, and $(w_{\rm p}, w_a)= (-1.03^{+0.04}_{-0.03},-0.4^{+0.4}_{-0.3})$ with $z_{\rm p}=0.21$ for the combination of all data considered. Curvature constraints of $\Omega_k=0.0009\pm 0.0017$ and effective relativistic species $N_{\rm eff}=3.10^{+0.15}_{-0.16}$ are dominated by external data. For massive sterile neutrinos, we improve the upper bound on the mass $m_{\rm eff}$ by a factor of three compared to previous analyses, giving 95% limits of $(\Delta N_{\rm eff},m_{\rm eff})\leq (0.28, 0.20\, {\rm eV})$. We also constrain changes to the lensing and Poisson equations controlled by functions $\Sigma(k,z) = \Sigma_0 \Omega_{\Lambda}(z)/\Omega_{\Lambda,0}$ and $\mu(k,z)=\mu_0 \Omega_{\Lambda}(z)/\Omega_{\Lambda,0}$ respectively to $\Sigma_0=0.6^{+0.4}_{-0.5}$ from DES alone and $(\Sigma_0,\mu_0)=(0.04\pm 0.05,0.08^{+0.21}_{-0.19})$ for the combination of all data. Overall, we find no significant evidence for physics beyond $\Lambda$CDM.

  • SALT2 Versus SALT3: Updated Model Surfaces and Their Impacts on Type Ia Supernova Cosmology

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: For the past decade, SALT2 has been the most common model used to fit Type Ia supernova (SN Ia) light curves for dark energy analyses. Recently, the SALT3 model was released, which upgraded a number of model features but has not yet been used for measurements of dark energy. Here, we evaluate the impact of switching from SALT2 to SALT3 for a SN cosmology analysis. We train SALT2 and SALT3 on an identical training sample of 1083 well-calibrated Type Ia supernovae, ensuring that any differences found come from the underlying model framework. We publicly release the results of this training (the SALT "surfaces"). We then run a cosmology analysis on the public Dark Energy Survey 3-Year Supernova data sample (DES-SN3YR), and on realistic simulations of those data. We provide the first estimate of the SN+CMB systematic uncertainty arising from the choice of SALT model framework (i.e. SALT2 versus SALT3), $\Delta w = +0.001 \pm 0.005$ -- a negligible effect at the current level of dark energy analyses. We also find that the updated surfaces are less sensitive to photometric calibration uncertainties than previous SALT2 surfaces, with the average spectral energy density dispersion reduced by a factor of two over optical wavelengths. This offers an opportunity to reduce the contribution of calibration errors to SN cosmology uncertainty budgets.

  • Concerning Colour: The Effect of Environment on Type Ia Supernova Colour in the Dark Energy Survey

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Recent analyses have found intriguing correlations between the colour ($c$) of type Ia supernovae (SNe Ia) and the size of their 'mass-step', the relationship between SN Ia host galaxy stellar mass ($M_\mathrm{stellar}$) and SN Ia Hubble residual, and suggest that the cause of this relationship is dust. Using 675 photometrically-classified SNe Ia from the Dark Energy Survey 5-year sample, we study the differences in Hubble residual for a variety of global host galaxy and local environmental properties for SN Ia subsamples split by their colour. We find a $3\sigma$ difference in the mass-step when comparing blue ($c0$) SNe. We observe the lowest r.m.s. scatter ($\sim0.14$ mag) in the Hubble residual for blue SNe in low mass/blue environments, suggesting that this is the most homogeneous sample for cosmological analyses. By fitting for $c$-dependent relationships between Hubble residuals and $M_\mathrm{stellar}$, approximating existing dust models, we remove the mass-step from the data and find tentative $\sim 2\sigma$ residual steps in rest-frame galaxy $U-R$ colour. This indicates that dust modelling based on $M_\mathrm{stellar}$ may not fully explain the remaining dispersion in SN Ia luminosity. Instead, accounting for a $c$-dependent relationship between Hubble residuals and global $U-R$, results in $\leq1\sigma$ residual steps in $M_\mathrm{stellar}$ and local $U-R$, suggesting that $U-R$ provides different information about the environment of SNe Ia compared to $M_\mathrm{stellar}$, and motivating the inclusion of galaxy $U-R$ colour in SN Ia distance bias correction.

  • Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and galaxy-galaxy lensing using the MagLim lens sample

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Two of the most sensitive probes of the large scale structure of the universe are the clustering of galaxies and the tangential shear of background galaxy shapes produced by those foreground galaxies, so-called galaxy-galaxy lensing. Combining the measurements of these two two-point functions leads to cosmological constraints that are independent of the galaxy bias factor. The optimal choice of foreground, or lens, galaxies is governed by the joint, but conflicting requirements to obtain accurate redshift information and large statistics. We present cosmological results from the full 5000 sq. deg. of the Dark Energy Survey first three years of observations (Y3) combining those two-point functions, using for the first time a magnitude-limited lens sample (MagLim) of 11 million galaxies especially selected to optimize such combination, and 100 million background shapes. We consider two cosmological models, flat $\Lambda$CDM and $w$CDM. In $\Lambda$CDM we obtain for the matter density $\Omega_m = 0.320^{+0.041}_{-0.034}$ and for the clustering amplitude $S_8 = 0.778^{+0.037}_{-0.031}$, at 68% C.L. The latter is only 1$\sigma$ smaller than the prediction in this model informed by measurements of the cosmic microwave background by the Planck satellite. In $w$CDM we find $\Omega_m = 0.32^{+0.044}_{-0.046}$, $S_8=0.777^{+0.049}_{-0.051}$, and dark energy equation of state $w=-1.031^{+0.218}_{-0.379}$. We find that including smaller scales while marginalizing over non-linear galaxy bias improves the constraining power in the $\Omega_m-S_8$ plane by $31$% and in the $\Omega_m-w$ plane by $41$% while yielding consistent cosmological parameters from those in the linear bias case. These results are combined with those from cosmic shear in a companion paper to present full DES-Y3 constraints from the three two-point functions (3x2pt).