您选择的条件: Hao Su
  • L dwarfs detection from SDSS images using improved Faster R-CNN

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present a data-driven approach to automatically detect L dwarfs from Sloan Digital Sky Survey(SDSS) images using an improved Faster R-CNN framework based on deep learning. The established L dwarf automatic detection (LDAD) model distinguishes L dwarfs from other celestial objects and backgrounds in SDSS field images by learning the features of 387 SDSS images containing L dwarfs. Applying the LDAD model to the SDSS images containing 93 labeled L dwarfs in the test set, we successfully detected 83 known L dwarfs with a recall rate of 89.25% for known L dwarfs. Several techniques are implemented in the LDAD model to improve its detection performance for L dwarfs,including the deep residual network and the feature pyramid network. As a result, the LDAD model outperforms the model of the original Faster R-CNN, whose recall rate of known L dwarfs is 80.65% for the same test set. The LDAD model was applied to detect L dwarfs from a larger validation set including 843 labeled L dwarfs, resulting in a recall rate of 94.42% for known L dwarfs. The newly identified candidates include L dwarfs, late M and T dwarfs, which were estimated from color (i-z) and spectral type relation. The contamination rates for the test candidates and validation candidates are 8.60% and 9.27%, respectively. The detection results indicate that our model is effective to search for L dwarfs from astronomical images.

  • L dwarfs detection from SDSS images using improved Faster R-CNN

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present a data-driven approach to automatically detect L dwarfs from Sloan Digital Sky Survey(SDSS) images using an improved Faster R-CNN framework based on deep learning. The established L dwarf automatic detection (LDAD) model distinguishes L dwarfs from other celestial objects and backgrounds in SDSS field images by learning the features of 387 SDSS images containing L dwarfs. Applying the LDAD model to the SDSS images containing 93 labeled L dwarfs in the test set, we successfully detected 83 known L dwarfs with a recall rate of 89.25% for known L dwarfs. Several techniques are implemented in the LDAD model to improve its detection performance for L dwarfs,including the deep residual network and the feature pyramid network. As a result, the LDAD model outperforms the model of the original Faster R-CNN, whose recall rate of known L dwarfs is 80.65% for the same test set. The LDAD model was applied to detect L dwarfs from a larger validation set including 843 labeled L dwarfs, resulting in a recall rate of 94.42% for known L dwarfs. The newly identified candidates include L dwarfs, late M and T dwarfs, which were estimated from color (i-z) and spectral type relation. The contamination rates for the test candidates and validation candidates are 8.60% and 9.27%, respectively. The detection results indicate that our model is effective to search for L dwarfs from astronomical images.

  • Unconditional and robust quantum metrological advantage beyond NOON states

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Quantum metrology employs quantum resources to enhance the measurement sensitivity beyond that can be achieved classically. While multi-photon entangled NOON states can in principle beat the shot-noise limit and reach the Heisenberg limit, high NOON states are difficult to prepare and fragile to photon loss which hinders it from reaching unconditional quantum metrological advantages. Here, we combine the idea of unconventional nonlinear interferometers and stimulated emission of squeezed light, previously developed for photonic quantum computer Jiuzhang, to propose and realize a new scheme that achieves a scalable, unconditional, and robust quantum metrological advantage. We observe a 5.8(1)-fold enhancement above the shot-noise limit in the Fisher information extracted per photon, without discounting for photon loss and imperfections, which outperforms ideal 5-NOON states. The Heisenberg-limited scaling, the robustness to external photon loss, and the ease-to-use of our method make it applicable in practical quantum metrology at low photon flux regime.

  • Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The tantalizing promise of quantum computational speedup in solving certain problems has been strongly supported by recent experimental evidence from a high-fidelity 53-qubit superconducting processor1 and Gaussian boson sampling (GBS) with up to 76 detected photons. Analogous to the increasingly sophisticated Bell tests that continued to refute local hidden variable theories, quantum computational advantage tests are expected to provide increasingly compelling experimental evidence against the Extended Church-Turing thesis. In this direction, continued competition between upgraded quantum hardware and improved classical simulations is required. Here, we report a new GBS experiment that produces up to 113 detection events out of a 144-mode photonic circuit. We develop a new high-brightness and scalable quantum light source, exploring the idea of stimulated squeezed photons, which has simultaneously near-unity purity and efficiency. This GBS is programmable by tuning the phase of the input squeezed states. We demonstrate a new method to efficiently validate the samples by inferring from computationally friendly subsystems, which rules out hypotheses including distinguishable photons and thermal states. We show that our noisy GBS experiment passes the nonclassicality test using an inequality, and we reveal non-trivial genuine high-order correlation in the GBS samples, which are evidence of robustness against possible classical simulation schemes. The photonic quantum computer, Jiuzhang 2.0, yields a Hilbert space dimension up to $10^{43}$, and a sampling rate $10^{24}$ faster than using brute-force simulation on supercomputers.