您选择的条件: Benjamin J. Shappee
  • COol Companions ON Ultrawide orbiTS (COCONUTS). III. A Very Red L6 Benchmark Brown Dwarf around a Young M5 Dwarf

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present the third discovery from the COol Companions ON Ultrawide orbiTS (COCONUTS) program, the COCONUTS-3 system, composed of a young M5 primary star UCAC4 374-046899 and a very red L6 dwarf WISEA J081322.19$-$152203.2. These two objects have a projected separation of 61$''$ (1891 au) and are physically associated given their common proper motions and estimated distances. The primary star, COCONUTS-3A, has a mass of $0.123\pm0.006$ M$_{\odot}$ and we estimate its age as 100 Myr to 1 Gyr based on its kinematics and spectrophotometric properties. We derive its metallicity as $0.21 \pm 0.07$ dex using empirical calibrations established by older higher-gravity M dwarfs and find this [Fe/H] could be slightly underestimated according to PHOENIX models given COCONUTS-3A's younger age. The companion, COCONUTS-3B, has a near-infrared spectral type of L6$\pm$1 INT-G, and we infer physical properties of $T_{\rm eff} = 1362^{+48}_{-73}$ K, $\log{(g)}= 4.96^{+0.15}_{-0.34}$ dex, $R = 1.03^{+0.12}_{-0.06}$ R$_{\rm Jup}$, and $M = 39^{+11}_{-18}$ M$_{\rm Jup}$, using its bolometric luminosity, its host star's age, and hot-start evolution models. We construct cloudy atmospheric model spectra at the evolution-based physical parameters and compare them to COCONUTS-3B's spectrophotometry. We find this companion possesses ample condensate clouds in its photosphere with the data-model discrepancies likely due to the models using an older version of the opacity database. Compared to field-age L6 dwarfs, COCONUTS-3B has fainter absolute magnitudes and a 120 K cooler $T_{\rm eff}$. Also, the J-K color of this companion is among the reddest for ultracool benchmarks with ages older than a few 100 Myr. COCONUTS-3 likely formed in the same fashion as stellar binaries given the companion-to-host mass ratio of 0.3 and represents a valuable benchmark to quantify the systematics of substellar model atmospheres.

  • A JWST Near- and Mid-Infrared Nebular Spectrum of the Type Ia Supernova 2021aefx

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present JWST near- and mid-infrared spectroscopic observations of the nearby normal Type Ia supernova SN 2021aefx in the nebular phase at $+255$ days past maximum light. Our Near Infrared Spectrograph (NIRSpec) and Mid Infrared Instrument (MIRI) observations, combined with ground-based optical data from the South African Large Telescope (SALT), constitute the first complete optical $+$ NIR $+$ MIR nebular SN Ia spectrum covering 0.3$-$14 $\mu$m. This spectrum unveils the previously unobserved 2.5$-$5 $\mu$m region, revealing strong nebular iron and stable nickel emission, indicative of high-density burning that can constrain the progenitor mass. The data show a significant improvement in sensitivity and resolution compared to previous Spitzer MIR data. We identify numerous NIR and MIR nebular emission lines from iron-group elements and as well as lines from the intermediate-mass element argon. The argon lines extend to higher velocities than the iron-group elements, suggesting stratified ejecta that are a hallmark of delayed-detonation or double-detonation SN Ia models. We present fits to simple geometric line profiles to features beyond 1.2 $\mu$m and find that most lines are consistent with Gaussian or spherical emission distributions, while the [Ar III] 8.99 $\mu$m line has a distinctively flat-topped profile indicating a thick spherical shell of emission. Using our line profile fits, we investigate the emissivity structure of SN 2021aefx and measure kinematic properties. Continued observations of SN 2021aefx and other SNe Ia with JWST will be transformative to the study of SN Ia composition, ionization structure, density, and temperature, and will provide important constraints on SN Ia progenitor and explosion models.

  • Revealing AGNs Through TESS Variability

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We used Transiting Exoplanet Survey Satellite (TESS) data to identify 29 candidate active galactic nuclei (AGNs) through their optical variability. The high-cadence, high-precision TESS light curves present a unique opportunity for the identification of AGNs, including those not selected through other methods. Of the candidates, we found that 18 have either previously been identified as AGNs in the literature or could have been selected based on emission-line diagnostics, mid-IR colors, or X-ray luminosity. AGNs in low-mass galaxies offer a window into supermassive black hole (SMBH) and galaxy co-evolution and 8 of the 29 candidates have estimated black hole masses $\mathrm{\lesssim 10^{6} M_{\odot}}$. The low-mass galaxies NGC 4395 and NGC 4449 are two of our five "high-confidence" candidates. By applying our methodology to the entire TESS main and extended mission datasets, we expect to identify $\sim$45 more AGN candidates, of which $\sim$26 will be new and $\sim$8 will be in low-mass galaxies.