您选择的条件: S. E. de Mink
  • Nucleosynthesis of binary-stripped stars

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The cosmic origin of the elements, the fundamental chemical building blocks of the Universe, is still uncertain. Binary interactions play a key role in the evolution of many massive stars, yet their impact on chemical yields is poorly understood. Using the MESA stellar evolution code we predict the chemical yields ejected in wind mass loss and the supernovae of single and binary-stripped stars. We do this with a large 162 isotope nuclear network at solar-metallicity. We find that binary-stripped stars are more effective producers of the elements than single stars, due to their increased mass loss and an increased chance to eject their envelopes during a supernova. This increased production by binaries varies across the periodic table, with Fluorine and Potassium being more significantly produced by binary-stripped stars than single stars. We find that the C12/C13 could be used as an indicator of the conservativeness of mass transfer, as C13 is preferentially ejected during mass transfer while C12 is preferentially ejected during wind mass loss. We identify a number of gamma-ray emitting radioactive isotopes that may be used to help constrain progenitor and explosion models of core-collapse supernovae with next-generation gamma-ray detectors. For single stars we find V44 and Mn52 are strong probes of the explosion model, while for binary-stripped stars it is Cr48. Our findings highlight that binary-stripped stars are not equivalent to two single stars and that detailed stellar modelling is needed to predict their final nucleosynthetic yields.

  • JWST Imaging of Earendel, the Extremely Magnified Star at Redshift $z=6.2$

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The gravitationally lensed star WHL0137-LS, nicknamed Earendel, was identified with a photometric redshift $z_{phot} = 6.2 \pm 0.1$ based on images taken with the Hubble Space Telescope. Here we present James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam) images of Earendel in 8 filters spanning 0.8--5.0$\mu$m. In these higher resolution images, Earendel remains a single unresolved point source on the lensing critical curve, increasing the lower limit on the lensing magnification to $\mu > 4000$ and restricting the source plane radius further to $r < 0.02$ pc, or $\sim 4000$ AU. These new observations strengthen the conclusion that Earendel is best explained by an individual star or multiple star system, and support the previous photometric redshift estimate. Fitting grids of stellar spectra to our photometry yields a stellar temperature of $T_{\mathrm{eff}} \simeq 13000$--16000 K assuming the light is dominated by a single star. The delensed bolometric luminosity in this case ranges from $\log(L) = 5.8$--6.6 $L_{\odot}$, which is in the range where one expects luminous blue variable stars. Follow-up observations, including JWST NIRSpec scheduled for late 2022, are needed to further unravel the nature of this object, which presents a unique opportunity to study massive stars in the first billion years of the universe.