按提交时间
按主题分类
按作者
按机构
您选择的条件: G. Micela
  • The GAPS Programme at TNG. XLI. The climate of KELT-9b revealed with a new approach to high spectral resolution phase curves

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: [Abridged] We present a novel method to study the thermal emission of exoplanets as a function of orbital phase at very high spectral resolution, and apply it to investigate the climate of the ultra-hot Jupiter KELT-9b. We combine 3 nights of HARPS-N and 2 nights of CARMENES optical spectra, covering orbital phases between quadratures (0.25 < phi < 0.75), when the planet shows its day-side hemisphere with different geometries. We co-add the signal of thousands of FeI lines through cross-correlation, which we map to a likelihood function. We investigate the phase-dependence of: (i) the line depths of FeI, and (ii) their Doppler shifts, by introducing a new method that exploits the very high spectral resolution of our observations. We confirm a previous detection of FeI emission and demonstrate a combined precision of 0.5 km s-1 on the orbital properties of KELT-9b. By studying the phase-resolved Doppler shift of FeI lines, we detect an anomaly in the planet's orbital radial velocity well-fitted with a slightly eccentric orbit (e = 0.016$\pm$0.003, w = 150$^{+13\circ}_{-11},~5\sigma$ preference). However, we argue that such anomaly can be explained by a day-night wind of a few km s-1 blowing neutral iron gas. Additionally, we find that the FeI emission line depths are symmetric around the substellar point within 10 deg ($2\sigma$). We show that these results are qualitatively compatible with predictions from general circulation models for ultra-hot Jupiter planets. Very high-resolution spectroscopy phase curves have the sensitivity to reveal a phase dependence in both the line depths and their Doppler shifts throughout the orbit. They are highly complementary to space-based phase curves obtained with HST and JWST, and open a new window into the still poorly understood climate and atmospheric structure of the hottest planets known.

  • Detection of barium in the atmospheres of the ultra-hot gas giants WASP-76b and WASP-121b

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: High-resolution spectroscopy studies of ultra-hot Jupiters have been key in our understanding of exoplanet atmospheres. Observing into the atmospheres of these giant planets allows for direct constraints on their atmospheric compositions and dynamics while laying the groundwork for new research regarding their formation and evolution environments. Two of the most well-studied ultra-hot Jupiters are WASP-76b and WASP-121b, with multiple detected chemical species and strong signatures of their atmospheric dynamics. We take a new look at these two exceptional ultra-hot Jupiters by reanalyzing the transit observations taken with ESPRESSO at the Very Large Telescope and attempt to detect additional species. To extract the planetary spectra of the two targets, we corrected for the telluric absorption and removed the stellar spectrum contributions. We then exploited new synthetic templates that were specifically designed for ultra-hot Jupiters in combination with the cross-correlation technique to unveil species that remained undetected by previous analyses. We add a novel detection of Ba+ to the known atmospheric compositions of WASP-76b and WASP-121b, the heaviest species detected to date in any exoplanetary atmosphere, with additional new detections of Co and Sr+ and a tentative detection of Ti+ for WASP-121b. We also confirm the presence of Ca+, Cr, Fe, H, Li, Mg, Mn, Na, and V on both WASP-76b and WASP-121b, with the addition of Ca, Fe+, and Ni for the latter. Finally, we also confirm the clear asymmetric absorption feature of Ca+ on WASP-121b, with an excess absorption at the bluer wavelengths and an effective planet radius beyond the Roche lobe. This indicates that the signal may arise from the escape of planetary atmosphere.

  • Two temperate Earth-mass planets orbiting the nearby star GJ1002

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We report the discovery and characterisation of two Earth-mass planets orbiting in the habitable zone of the nearby M-dwarf GJ~1002 based on the analysis of the radial-velocity (RV) time series from the ESPRESSO and CARMENES spectrographs. The host star is the quiet M5.5~V star GJ~1002 (relatively faint in the optical, $V \sim 13.8$ mag, but brighter in the infrared, $J \sim 8.3$ mag), located at 4.84 pc from the Sun. We analyse 139 spectroscopic observations taken between 2017 and 2021. We performed a joint analysis of the time series of the RV and full-width half maximum (FWHM) of the cross-correlation function (CCF) to model the planetary and stellar signals present in the data, applying Gaussian process regression to deal with the stellar activity. We detect the signal of two planets orbiting GJ~1002. GJ~1002~b is a planet with a minimum mass $m_p \sin i $ of 1.08 $\pm$ 0.13 M$_{\oplus}$ with an orbital period of 10.3465 $\pm$ 0.0027 days at a distance of 0.0457 $\pm$ 0.0013 au from its parent star, receiving an estimated stellar flux of 0.67 $F_{\oplus}$. GJ~1002 c is a planet with a minimum mass $m_p \sin i $ of 1.36 $\pm$ 0.17 M$_{\oplus}$ with an orbital period of 21.202 $\pm$ 0.013 days at a distance of 0.0738 $\pm$ 0.0021 au from its parent star, receiving an estimated stellar flux of 0.257 $F_{\oplus}$. We also detect the rotation signature of the star, with a period of 126 $\pm$ 15 days. GJ~1002 is one of the few known nearby systems with planets that could potentially host habitable environments. The closeness of the host star to the Sun makes the angular sizes of the orbits of both planets ($\sim$ 9.7 mas and $\sim$ 15.7 mas, respectively) large enough for their atmosphere to be studied via high-contrast high-resolution spectroscopy with instruments such as the future spectrograph ANDES for the ELT or the LIFE mission.

  • Analysis of the planetary mass uncertainties on the accuracy of atmospherical retrieval

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Characterising the properties of exoplanet atmospheres relies on several interconnected parameters, which makes it difficult to determine them independently. Planetary mass plays a role in determining the scale height of atmospheres, similarly to the contribution from the average molecular weight of the gas. We investigate the relevance of planetary mass knowledge in spectral retrievals, identifying cases where mass measurements are needed for clear or cloudy and primary or secondary atmospheres, along with the relevant precision, in the context of the ESA M4 Ariel Mission. We used TauREx to simulate the Ariel transmission spectra of representative targets of the Ariel mission reference sample, assuming different scenarios: a primordial cloudy atmosphere of a hot Jupiter and a hot Neptune, as well as the secondary atmosphere of a super-Earth that also exhibits a cloud presence. We extracted information on the various properties of the atmospheres for the cases of unknown mass or mass with different uncertainties. We also tested how the signal-to-noise ratio impacts atmospheric retrieval for different wavelength ranges. We accurately retrieved the primordial atmospheric composition independently from mass uncertainties for clear atmospheres, while we found that the uncertainties increased for high altitude clouds. We highlight the importance of the signal-to-noise ratio in the Rayleigh scattering region of the spectrum. For the secondary atmosphere cases, a mass uncertainty no larger than 50% is sufficient to retrieve the atmospheric parameters, even in the presence of clouds. Our analysis suggests that even in the worst-case scenario, a 50% mass precision level is enough for producing reliable retrievals, while an atmospheric retrieval without any knowledge of a planetary mass could lead to biases in cloudy primary atmospheres as well as in secondary atmospheres.

  • Planetary system around LTT 1445A unveiled by ESPRESSO: Multiple planets in a triple M-dwarf system

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present radial velocity follow-up obtained with ESPRESSO of the M-type star LTT 1445A (TOI-455), for which a transiting planet b with an orbital period of~5.4 days was detected by TESS. We report the discovery of a second transiting planet (LTT 1445A c) and a third non-transiting candidate planet (LTT 1445A d) with orbital periods of 3.12 and 24.30 days, respectively. The host star is the main component of a triple M-dwarf system at a distance of 6.9 pc. We used 84 ESPRESSO high-resolution spectra to determine accurate masses of 2.3$\pm$0.3 $\mathrm{M}_\oplus$ and 1.0$\pm$0.2 $\mathrm{M}_\oplus$ for planets b and c and a minimum mass of 2.7$\pm$0.7 $\mathrm{M}_\oplus$ for planet d. Based on its radius of 1.43$\pm0.09$ $\mathrm{R}_\oplus$ as derived from the TESS observations, LTT 1445A b has a lower density than the Earth and may therefore hold a sizeable atmosphere, which makes it a prime target for the James Webb Space Telescope. We used a Bayesian inference approach with the nested sampling algorithm and a set of models to test the robustness of the retrieved physical values of the system. There is a probability of 85$\%$ that the transit of planet c is grazing, which results in a retrieved radius with large uncertainties at 1.60$^{+0.67}_{-0.34}$ $\mathrm{R}_\oplus$. LTT 1445A d orbits the inner boundary of the habitable zone of its host star and could be a prime target for the James Webb Space Telescope.