Your conditions: A. Bragaglia
  • Gaia Early Data Release 3: The celestial reference frame (Gaia-CRF3)

    Subjects: Astronomy >> Astrophysical processes submitted time 2023-02-19

    Abstract: Gaia-CRF3 is the celestial reference frame for positions and proper motions in the third release of data from the Gaia mission, Gaia DR3 (and for the early third release, Gaia EDR3, which contains identical astrometric results). The reference frame is defined by the positions and proper motions at epoch 2016.0 for a specific set of extragalactic sources in the (E)DR3 catalogue. We describe the construction of Gaia-CRF3, and its properties in terms of the distributions in magnitude, colour, and astrometric quality. Compact extragalactic sources in Gaia DR3 were identified by positional cross-matching with 17 external catalogues of quasars (QSO) and active galactic nuclei (AGN), followed by astrometric filtering designed to remove stellar contaminants. Selecting a clean sample was favoured over including a higher number of extragalactic sources. For the final sample, the random and systematic errors in the proper motions are analysed, as well as the radio-optical offsets in position for sources in the third realisation of the International Celestial Reference Frame (ICRF3). The Gaia-CRF3 comprises about 1.6 million QSO-like sources, of which 1.2 million have five-parameter astrometric solutions in Gaia DR3 and 0.4 million have six-parameter solutions. The sources span the magnitude range G = 13 to 21 with a peak density at 20.6 mag, at which the typical positional uncertainty is about 1 mas. The proper motions show systematic errors on the level of 12 ${\mu}$as yr${}^{-1}$ on angular scales greater than 15 deg. For the 3142 optical counterparts of ICRF3 sources in the S/X frequency bands, the median offset from the radio positions is about 0.5 mas, but exceeds 4 mas in either coordinate for 127 sources. We outline the future of the Gaia-CRF in the next Gaia data releases.

  • Stellar Population Astrophysics (SPA) with TNG Atmospheric parameters of members of 16 unstudied open clusters

    Subjects: Astronomy >> Astrophysical processes submitted time 2023-02-19

    Abstract: Thanks to modern understanding of stellar evolution, we can accurately measure the age of Open Clusters (OCs). Given their position, they are ideal tracers of the Galactic disc. Gaia data release 2, besides providing precise parallaxes, led to the detection of many new clusters, opening a new era for the study of the Galactic disc. However, detailed information on the chemical abundance for OCs is necessary to accurately date them and to efficiently use them to probe the evolution of the disc.Mapping and exploring the Milky Way structure %to combine accurate chemical information of OCs is the main aim of the Stellar Population Astrophysics (SPA) project. Part of this work involves the use of OCs and the derivation of their precise and accurate chemical composition.We analyze here a sample of OCs located within about 2 kpc from the Sun, with ages from about 50 Myr to a few Gyr.We used HARPS-N at the Telescopio Nazionale Gaileo and collected very high-resolution spectra (R = 115\,000) of 40 red giant/red clump stars in 18 OCs (16 never or scarcely studied plus two comparison clusters). We measured their radial velocities and derived the stellar parameters.We discussed the relationship between metallicity and Galactocentric distance, adding literature data to our results to enlarge the sample and taking also age into account. We compared the result of observational data with that from chemo-dynamical models. These models generally reproduce the metallicity gradient well. However, at young ages we found a large dispersion in metallicity, not reproduced by models. Several possible explanations are explored, including uncertainties in the derived metallicity. We confirm the difficulties in determining parameters for young stars (age < 200 Myr), due to a combination of intrinsic factors which atmospheric models can not easily reproduce and which affect the parameters uncertainty

  • Stellar Population Astrophysics (SPA) with the TNG. alpha-elements, lithium, sodium and aluminum in 16 open clusters

    Subjects: Astronomy >> Astrophysical processes submitted time 2023-02-19

    Abstract: Exploring the Galactic chemical evolution and enrichment scenarios with open clusters allows us to understand the history of the Milky Way disk. High-resolution spectra of OCs are a crucial tool, as they provide precise chemical information, to combine with precise distances and ages. The aim of the Stellar Population Astrophysics project is to derive homogeneous and accurate comprehensive chemical characterization of a number of poorly studied OCs.Using the HARPS-N echelle spectrograph at the Telescopio Nazionale Galileo, we obtained high-resolution spectra of giant stars in 18 OCs, 16 of which are chemically characterized for the first time, and two of which are well studied for comparison. The OCs in this sample have ages from a few tens of Myr to 4 Gyr, with a prevalence of young clusters. We already presented the radial velocities and atmospheric parameters for them in a previous SPA paper. Here, we present results for the alpha-elements O, and the light elements, all determined by the equivalent width method. We also measured Li abundance through the synthesis method.We discuss the behaviors of lithium, sodium and aluminum in the context of stellar evolution. We study the radial, vertical, and age trends for the measured abundance ratios in a sample that combines our results and recent literature for OCs, finding significant gradients only for [Mg/Fe] and [Ca/Fe] in all cases. Finally,we compare O and Mg in the combined sample with chemo-dynamical models, finding a good agreement for intermediate-age and old clusters. There is a sharp increase in the abundance ratios measured among very young clusters, accompanied by a poorer fit with the models for O and Mg, likely related to the inadequacy of traditional model atmospheres and methods in the derivation of atmospheric parameters and abundance ratios for stars of such young ages