您选择的条件: Antonino P. Milone
  • Multiple stellar populations at less evolved stages-III: a possible helium spread in NGC 2210

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Helium variations are common features of globular clusters (GCs) with multiple stellar populations. All the formation scenarios predict that secondary population stars are enhanced in helium but the exact helium content depends on the polluters. Therefore, searching for helium variations in a star cluster is a straightforward method to understand if it hosts multiple populations or not, and constrain the formation scenario. Although this topic has been well explored for Galactic GCs, GCs beyond the Milky Way are challenging to study because of their large distances. This work studies the helium distribution of GK-type main sequence dwarfs in an old ($\sim$12.5 Gyr) GC in the Large Magellanic Cloud, NGC 2210, using the deep photometry observed by the {\sl Hubble Space Telescope}. We compare the observed morphology of the MS with that of synthetic populations with different helium distributions. We confirm that NGC 2210 dwarfs have a helium spread, with an internal dispersion of $\delta{Y}\sim$0.06--0.07. The fraction of helium enriched stars depends on the $\delta{Y}$ distribution. A continuous $\delta{Y}$ distribution would indicate that more than half of MS stars are helium enriched ($\sim$55\%). If the $\delta{Y}$ distribution is discrete (bimodal), a fraction of $\sim$30\% enriched stars is able to explain the observed morphology of the MS. We also find that the He-enriched population stars are more centrally concentrated than He-normal stars.

  • Multiple stellar populations at less evolved stages-III: a possible helium spread in NGC 2210

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Helium variations are common features of globular clusters (GCs) with multiple stellar populations. All the formation scenarios predict that secondary population stars are enhanced in helium but the exact helium content depends on the polluters. Therefore, searching for helium variations in a star cluster is a straightforward method to understand if it hosts multiple populations or not, and constrain the formation scenario. Although this topic has been well explored for Galactic GCs, GCs beyond the Milky Way are challenging to study because of their large distances. This work studies the helium distribution of GK-type main sequence dwarfs in an old ($\sim$12.5 Gyr) GC in the Large Magellanic Cloud, NGC 2210, using the deep photometry observed by the {\sl Hubble Space Telescope}. We compare the observed morphology of the MS with that of synthetic populations with different helium distributions. We confirm that NGC 2210 dwarfs have a helium spread, with an internal dispersion of $\delta{Y}\sim$0.06--0.07. The fraction of helium enriched stars depends on the $\delta{Y}$ distribution. A continuous $\delta{Y}$ distribution would indicate that more than half of MS stars are helium enriched ($\sim$55\%). If the $\delta{Y}$ distribution is discrete (bimodal), a fraction of $\sim$30\% enriched stars is able to explain the observed morphology of the MS. We also find that the He-enriched population stars are more centrally concentrated than He-normal stars.

  • Searching for multiple populations in star clusters using the China Space Station Telescope

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Multiple stellar populations (MPs) in most star clusters older than 2 Gyr, as seen by lots of spectroscopic and photometric studies, have led to a significant challenge to the traditional view of star formation. In this field, space-based instruments, in particular the Hubble Space Telescope (HST), have made a breakthrough as they significantly improved the efficiency of detecting MPs in crowding stellar fields by images. The China Space Station Telescope (CSST) and the HST are sensitive to a similar wavelength interval, but it covers a field of view which is about 5-8 times wider than that of HST. One of its instruments, the Multi-Channel Imager (MCI), will have multiple filters covering a wide wavelength range from NUV to NIR, making the CSST a potentially powerful tool for studying MPs in clusters. In this work, we evaluate the efficiency of the designed filters for the MCI/CSST in revealing MPs in different color-magnitude diagrams (CMDs). We find that CMDs made with MCI/CSST photometry in appropriate UV filters are powerful tools to disentangle stellar populations with different abundances of He, C, N, O and Mg. On the contrary, the traditional CMDs are blind to multiple populations in globular clusters (GCs). We show that CSST has the potential of being the spearhead instrument for investigating MPs in GCs in the next decades.