您选择的条件: Chao He
  • A Cross-Laboratory Comparison Study of Titan Haze Analogs: Surface Energy

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In Titan's nitrogen-methane atmosphere, photochemistry leads to the production of complex organic particles, forming Titan's thick haze layers. Laboratory-produced aerosol analogs, or "tholins", are produced in a number of laboratories; however, most previous studies have investigated analogs produced by only one laboratory rather than a systematic, comparative analysis. In this study, we performed a comparative study of an important material property, the surface energy, of seven tholin samples produced in three independent laboratories under a broad range of experimental conditions, and explored their commonalities and differences. All seven tholin samples are found to have high surface energies, and are therefore highly cohesive. Thus, if the surface sediments on Titan are similar to tholins, future missions such as Dragonfly will likely encounter sticky sediments. We also identified a commonality between all the tholin samples: a high dispersive (non-polar) surface energy component of at least 30 mJ/m2. This common property could be shared by the actual haze particles on Titan as well. Given that the most abundant species interacting with the haze on Titan (methane, ethane, and nitrogen) are non-polar in nature, the dispersive surface energy component of the haze particles could be a determinant factor in condensate-haze and haze-lake liquids interactions on Titan. With this common trait of tholin samples, we confirmed the findings of a previous study by Yu et al. (2020) that haze particles are likely good cloud condensation nuclei (CCN) for methane and ethane clouds and would likely be completely wetted by the hydrocarbon lakes on Titan.

  • Optical Constants of Titan Haze Analogue from 0.4 to 3.5 {\mu}m: Determined Using Vacuum Spectroscopy

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Titan's thick atmosphere is primarily composed of nitrogen and methane. Complex chemistry happening in Titan's atmosphere produces optically thick organic hazes. These hazes play significant roles in Titan's atmosphere and on its surface, and their optical properties are crucial for understanding many processes happening on Titan. Due to the lack of such information, the optical constants of laboratory prepared Titan haze analogues are essential inputs for atmospheric modeling and data analysis of remote sensing observations of Titan. Here, we perform laboratory simulations in a Titan relevant environment, analyze the resulting Titan haze analogues using vacuum Fourier transform infrared spectroscopy, and calculate the optical constants from the measured transmittance and reflectance spectra. We provide a reliable set of optical constants of Titan haze analogue in the wavelength range from 0.4 to 3.5 micron and will extend to 28.5 micron in the near future, which can both be used for analyzing existing and future observational data of Titan. This study establishes a feasible method to determine optical constants of haze analogues of (exo)planetary bodies.

  • Haze Evolution in Temperate Exoplanet Atmospheres Through Surface Energy Measurements

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Photochemical hazes are important opacity sources in temperate exoplanet atmospheres, hindering current observations from characterizing exoplanet atmospheric compositions. The haziness of an atmosphere is determined by the balance between haze production and removal. However, the material-dependent removal physics of the haze particles is currently unknown under exoplanetary conditions. Here we provide experimentally-measured surface energies for a grid of temperate exoplanet hazes to characterize haze removal in exoplanetary atmospheres. We found large variations of surface energies for hazes produced under different energy sources, atmospheric compositions, and temperatures. The surface energies of the hazes were found to be the lowest around 400 K for the cold plasma samples, leading to the lowest removal rates. We show a suggestive correlation between haze surface energy and atmospheric haziness with planetary equilibrium temperature. We hypothesize that habitable zone exoplanets could be less hazy, as they would possess high-surface-energy hazes which can be removed efficiently.

  • An experimental and theoretical investigation of HCN production in the Hadean Earth atmosphere

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: A critical early stage for the origin of life on Earth may have involved the production of hydrogen cyanide (HCN) in a reducing, predominantly H$_2$ atmosphere. HCN is crucial for the origin of life as it is a possible precursor to several biomolecules that make up RNA and proteins including nucleobases, nucleotides, amino acids, and ribose. In this work, we perform an in depth experimental and theoretical investigation of HCN production in reducing atmospheric conditions (89-95% H$_2$) possibly representing the earliest stages of the Hadean eon, ~4.5-4.3 billion years ago. We make use of cold plasma discharges - a laboratory analog to shortwave UV radiation - to simulate HCN production in the upper layers of the atmosphere for CH$_4$ abundances ranging from 0.1-6.5%. We then combine experimental mass spectrum measurements with our theoretical plasma models to estimate the HCN concentrations produced in our experiments. We find that upper atmospheric HCN production scales linearly with CH$_4$ abundance with the relation [HCN] = 0.13 $\pm$ 0.01[CH$_4$]. Concentrations of HCN near the surface of the Hadean Earth are expected to be about 2-3 orders of magnitude lower. The addition of 1% water to our experiments results in a ~50% reduction in HCN production. We find that four reactions are primarily responsible for HCN production in our experiments: (i) $^4$N + CH$_3$ -> H$_2$CN + H -> HCN + H$_2$, (ii) $^4$N + CH -> CN + H followed by CN + CH$_4$ -> HCN + CH$_3$, (iii) C$_2$H$_4$ + $^4$N -> HCN + CH$_3$, and (iv) $^4$N + $^3$CH$_2$ -> HCN + H. The most prebiotically favorable Hadean atmosphere would have been very rich in CH$_4$ (> 5%), and as a result of greenhouse effects the surface would be likely very hot. In such a prebiotic scenario, it may have been important to incorporate HCN into organic hazes that could later release biomolecules and precursors into the first ponds.

  • Optical Properties of Organic Hazes in Water-rich Exoplanet Atmospheres: Implications for Observations with JWST

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: JWST has begun its scientific mission, which includes the atmospheric characterization of transiting exoplanets. Some of the first exoplanets to be observed by JWST have equilibrium temperatures below 1000 K, which is a regime where photochemical hazes are expected to form. The optical properties of these hazes, which controls how they interact with light, are critical for interpreting exoplanet observations, but relevant data are not available. Here we measure the optical properties of organic haze analogues generated in water-rich exoplanet atmosphere experiments. We report optical constants (0.4 to 28.6 micron) of organic hazes for current and future observational and modeling efforts covering the entire wavelength range of JWST instrumentation and a large part of Hubble. We use these optical constants to generate hazy model atmospheric spectra. The synthetic spectra show that differences in haze optical constants have a detectable effect on the spectra, impacting our interpretation of exoplanet observations. This study emphasizes the need to investigate the optical properties of hazes formed in different exoplanet atmospheres, and establishes a practical procedure to determine such properties.

  • Titan Atmospheric Chemistry Revealed by Low-temperature N2-CH4 Plasma Discharge Experiments

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Chemistry in Titan's N2-CH4 atmosphere produces complex organic aerosols. The chemical processes and the resulting organic compounds are still far from understood, although extensive observations, laboratory, and theoretical simulations have greatly improved physical and chemical constraints on Titan's atmosphere. Here, we conduct a series of Titan atmosphere simulation experiments with N2-CH4 gas mixtures and investigate the effect of initial CH4 ratio, pressure, and flow rate on the production rates and composition of the gas and solid products at a Titan relevant temperature (100 K) for the first time. We find that the production rate of the gas and solid products increases with increasing CH4 ratio. The nitrogen-containing species have much higher yield than hydrocarbons in the gas products, and the N-to-C ratio of the solid products appears to be the highest compared to previous plasma simulations with the same CH4 ratio. The greater degree of nitrogen incorporation in the low temperature simulation experiments suggests temperature may play an important role in nitrogen incorporation in Titan's cold atmosphere. We also find that H2 is the dominant gas product and serves as an indicator of the production rate of new organic molecules in the experiment, and that CH2NH may greatly contribute to the incorporation of both carbon and nitrogen into the solid particles. The pressure and flow rate affect the amount of time of the gas mixture exposed to the energy source and therefore impact the N2-CH4 chemistry initiated by the plasma discharge, emphasizing the influence of the energy flux in Titan atmospheric chemistry.

  • Lensless coherent diffraction imaging based on spatial light modulator with unknown modulation curve

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Lensless imaging is a popular research field for the advantages of small size, wide field-of-view and low aberration in recent years. However, some traditional lensless imaging methods suffer from slow convergence, mechanical errors and conjugate solution interference, which limit its further application and development. In this work, we proposed a lensless imaging method based on spatial light modulator (SLM) with unknown modulation curve. In our imaging system, we use SLM to modulate the wavefront of object, and introduce the ptychographic scanning algorithm that is able to recover the complex amplitude information even the SLM modulation curve is inaccurate or unknown. In addition, we also design a split-beam interference experiment to calibrate the modulation curve of SLM, and using the calibrated modulation function as the initial value of the expended ptychography iterative engine (ePIE) algorithm can improve the convergence speed. We further analyze the effect of modulation function, algorithm parameters and the characteristics of the coherent light source on the quality of reconstructed image. The simulated and real experiments show that the proposed method is superior to traditional mechanical scanning methods in terms of recovering speed and accuracy, with the recovering resolution up to 14 um.